
A Modular Reasoning System Using
Uninterpreted Predicates for Code Reuse

Crystal Chang Din, Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu
Department of Informatics, University of Oslo
P.O. Box 1080 Blindern, N-0316 Oslo, Norway
Email: {crystald,einarj,olaf,ingridcy}@ifi.uio.no

Abstract

This paper proposes a modular proof system based on uninterpreted predicates.
The proposed proof system allows modular reasoning about programs with an
open-world assumption, which goes beyond behavioral subtyping. The proof
system enables modular reasoning about languages with very flexible code reuse
mechanisms, such as traits and deltas in the context of object-oriented program-
ming. Whereas related work on incremental proof systems prove soundness in
terms of internal consistency, this paper establishes both soundness and rel-
ative completeness of the proposed proof system by relating it to a standard
proof system for a simple object-oriented language. The applicability of the ap-
proach is demonstrated on different code reuse mechanisms: unrestricted class
inheritance, delta-oriented programming, and trait-based programming.

Keywords: Modular programming, Modular reasoning, Code reuse,
Uninterpreted predicates, Program verification, Early reasoning, Delayed
specification, Soundness, Completeness

1. Introduction

Modern society is increasingly based on software which is constantly revised
and updated. Code reuse and modular software development simplify the main-
tenance of complex software and shorten the development process until a new
or enhanced release of a software program can be released. To support a de-
velopment process based on flexible reuse and adaptation of software modules,
it is crucial to be able to statically reason about the behavior of each module
before composing reused modules into programs.

Class hierarchies in object-oriented programming provide a structured means
to study software evolution in terms of reuse and adaptation of software mod-
ules. In object-oriented programs, class hierarchies typically grow as subclasses

IThis work was done in the context of the projects CUMULUS: Semantics-based Analysis
for Cloud-Aware Computing and IoTSec: Security of Internet of Things.

Preprint submitted to Elsevier December 21, 2017

are gradually developed. The code can be refactored; one method may move
between a subclass and a superclass, another method may get reprogrammed
with slightly different behavior, and a third method may get deleted. Software
developers use code composition and reuse mechanisms to better structure this
evolution. In particular, code reuse mechanisms enable existing modules to be
adapted to meet new and unanticipated needs.

Class inheritance in object-oriented programming is a well-known structur-
ing mechanism to support code reuse with adaptation: A class may extend its
superclasses with new methods, possibly overriding existing ones. This flexi-
bility significantly complicates reasoning about the behavior of methods as the
method activation at runtime depends on the actual class of the called object.
The behavior of a method may change indirectly due to calls to other, redefined
methods. Modern code reuse and adaptation mechanisms, such as traits [14, 30]
and deltas [27, 29], enable more radical changes to the code units by adding or
removing methods and fields or by wrapping methods in the modified classes.
In contrast to class inheritance, where the subclass is developed to extend one
particular superclass, a trait or delta may be applied in several, different con-
texts.

Software verification systems impose restrictions in order to control code
reuse and evolution. One approach is to rely on a closed world assumption; i.e.,
the proof rules assume that the final, complete code is available at reasoning
time (e.g., [25]). This approach does not impose restrictions on software reuse,
but severely reduces the applicability of the proof system; for example, libraries
are often designed to be extended. Moreover, the closed world assumption con-
tradicts inheritance as an object-oriented design principle, intended to support
incremental development and analysis. If the reasoning system relies on the
world being closed, extending the class hierarchy requires a costly reverification
of previously analyzed code.

An alternative approach is to reflect an open world assumption in the ver-
ification system, but to constrain how methods may be redefined. To avoid
reverification, any redefinition of a method must preserve the behavior of the
method being redefined and in particular the method’s contract; i.e., the pre-
and postconditions for its body must remain valid. Best known as behavioral
subtyping (e.g., [2, 3, 19, 21, 22, 26]), this approach achieves incremental reason-
ing by limiting the possibilities for method overriding, and thereby code reuse.
Once a specification has been given for a method, this specification must be
respected by later redefinitions. Proof systems with behavioral subtyping have
also been proposed for delta-oriented programs [17]. However, behavioral sub-
typing has been criticized for being overly restrictive and is often violated in
practice [31]. A main difficulty with behavioral subtyping is that strong con-
tracts limit code reuse, while weak contracts limit reasoning. When defining a
contract, one needs to consider the possible future code reuse of the method.
This conflicts with the open world assumption. Another problem is that when
reusing a class which only has a weak specification, one must look at the actual
code to find out what the class does.

A recent line of work investigates how to control reasoning with an open

2

world assumption, with less severe restrictions than behavioral subtyping. Lazy
behavioral subtyping proposes a lazy approach to behavioral subtyping’s restric-
tion to property preservation to a “restrict-by-need” incremental program de-
velopment, which enables more programs to be verified than with behavioral
subtyping. This is achieved by means of a book-keeping machinery to track the
actually required properties in the inheritance tree. Lazy behavioral subtyp-
ing techniques were first developed for code reuse based on single class inheri-
tance [11], and later also for multiple inheritance [12]. A similar book-keeping
approach has been developed for refactoring [13]; in this setting verification is no
longer fully incremental in the general case, but the book-keeping tracks which
proofs are actually violated by a given change to the code and which proofs re-
main valid. A related line of research introduces two-stage verification (akin to
incremental type-checking) by accepting that local reasoning is limited by later
reuse and leaving some proof obligations to be instantiated in a precise manner
in a second stage of reasoning. A proof system for traits has been developed
following this approach [8]. Uninterpreted predicates make the unknown parts
of this verification process explicit by representing unknown predicates in the
specifications as variables, which are resolved in the second stage. This idea was
introduced by the authors to establish the first modular proof system for delta-
oriented programming [9]. Abstract contracts [5, 16] introduce similar variables
in JML-like contracts to reason about class inheritance in KeY. This work also
demonstrates that this kind of approach significantly reduces the verification
effort by enabling proof reuse.

This paper develops a modular proof system based on uninterpreted predi-
cates and a two-stage verification process for Lightweight Java [32], a subset of
Java. We show that this proof system is sound and relative complete [7] with re-
spect to a standard proof system for the same language, without uninterpreted
predicates. We further show that the proposed framework can be applied to
different code reuse mechanisms, such as class inheritance, trait-based program-
ming, and delta-oriented programming. Thus, this paper extends our previous
work [9] on a proof system for delta-oriented programs by providing a formal-
ization of the proof system, soundness and relative completeness proofs for this
proof system, and by relating it to class inheritance and to traits. Whereas
previous related work introduces notions of soundness in terms of internal con-
sistency (e.g., [5, 8, 11–13]), we are not aware of similar proofs of soundness and
of relative completeness for this kind of proof system.

The paper is organized as follows. Section 2 presents the Lightweight Java
language and its standard proof system. Section 3 introduces the proof sys-
tem using uninterpreted predicates for code reuse. Section 4 establishes the
soundness and completeness proofs for the proof system. Section 5 presents two
different applications of the approach: delta-oriented programming and trait-
based programming. Section 6 discusses related work and Section 7 concludes
the paper.

3

CD ::“ class C tFD;MDu classes
FD ::“ N f “ c fields
s ::“ w “ rhs | if peq s else s fi statements
rhs ::“ e | new C | mpeq | v.mpeq assignment rhs
N ::“ C | int | boolean nominal types
MD ::“ N mpN1 xqtN2 y; s;return e; u methods
w ::“ f | y assignable variables
v ::“ w | x program variables
e ::“ v | this | oppeq expressions

Figure 1: The syntax of LWJ. Variable C is a class name, f is a field name, c is a constant
(including null), x is a method parameter name, y is a name for a method local variable, and
e are side-effect free expressions including primitive values.

2. The Language and Proof System of Lightweight Java

Lightweight Java (LWJ) [32] is a core calculus for an imperative subset of
Java. Compared to Featherweight Java (FJ) [18], a major difference is that LWJ
also models state whereas FJ is purely functional. We are focusing on modular
reasoning with code reuse related to methods, and thus method binding is af-
fected. To keep the language small, we therefore avoid other mechanisms such
as loop constructs and avoid remote access to fields, which complicate modular
reasoning. We do allow remote access to objects by means of method calls.
The syntax of LWJ is shown in Figure 1 and briefly explained as follows. LWJ
contains classes CD, fields FD, and statements s for assignment, conditionals,
object creation, and method calls. LWJ has a nominal type system with types
N which include class names, integers, and Booleans. Method definitions MD
contains method parameters, local variable declarations, method body, a return
statement, and method return type. The grammar distinguishes variables in
assignable positions w from those in non-assignable positions v. Although sin-
gle inheritance is supported by LWJ, it is not considered at this point in this
paper. This is because flattened products written in LWJ will not have a class
hierarchy. As usual overline notation denotes collections such as lists or sets,
depending on the context; for instance, s denotes a list of statements.

2.1. The Assertion Language
Let us now consider programs in LWJ for which methods have associated

method specifications; i.e., class definitions have annotated method declarations
AMD instead of the method declarations MD of Figure 1. The BNF syntax for
annotated method declarations (AMD) is shown in Figure 2. Here, sp is a list
of method contracts and req is a set of assumptions about other methods. The
intuition is that method specifications ap are guaranteed by the current method,
assuming that the requirements req are satisfied by the methods invoked by the
current method. An method specification ap is a pair of Boolean assertions
(predicates). Assertions a are side-effect free formulae, including expressions e,
logical variables z, a reserved variable result for the method’s return value, and

4

AMD ::“MD sp annotated method declarations
sp ::“ guar tapu req trequ method contracts
ap ::“ pa, aq method specification
req ::“m : tapu requirements
a ::“ e | z | result | oppaq assertions

Figure 2: The assertion language for LWJ.

compound expressions oppaq which apply an operator op to a list of assertions.
Note that method parameters are not assignable and the variable result can only
be used in the postcondition and not in the precondition.

Basic notation. Let p and q be variables ranging over Boolean assertions, and
let pz

z1 denote that all occurrences of variables z in p are replaced by the corre-
sponding variable in z1. Primed variables are conventionally of the same syn-
tactic category as the corresponding unprimed variables; for example, in py

y1 the
program variable y is replaced by another program variable y1. This kind of
renaming will typically be related to change of scope in the proof system in the
sequel.

A Hoare triple tpu s tqu expresses partial correctness [4]: if a statement list
s is executed in a state where assertion p holds and the execution terminates,
then assertion q holds in the state upon termination. A method specification
pp, qq for a method with body s holds if the Hoare triple tpu s tqu is valid. We
consider proof systems concerning judgements of the form

Γ $ tpu s tqu

where Γ is a set of assumptions about such method specifications; these are
written as mpN xq : pp, qq. These assumptions are used to make derivations
about method calls in the statement list s.

Method Contracts. A method contract guar tSu req tΓu, where S is a set
of method specifications pp, qq and Γ is a list of requirements concerning the
invoked methods, expresses that the specifications in S will hold for the method
under the assumption that requirements in Γ hold for the invoked methods. The
requirements in Γ are needed to decouple the verification of a method from the
verification of the methods it calls. Thus, a method declaration for a method m
has the form

N mpN1 xqtN2 y; s;return eu guar tSu req tΓu.

The method contract expresses that

@pp, qq P S ¨ Γ $ tpz
z1u s;return e tqzz1u,

where the logical variables z are renamed to fresh names z1 to avoid name capture
between different scopes. Thus, for each method specification pp, qq P S, we need
to prove the corresponding Hoare triple.

5

The set S of method specifications may contain multiple specifications for
the same method. One motivation for allowing multiple specifications, is to
keep each specification simple and easy to understand, as in the example of
Section 2.1.1 below. Multiple specifications can also be used to allow concrete
specification alongside abstract specifications with uninterpreted symbols, when
uninterpreted symbols are added in Section 3, as illustrated by the example in
Section 3.1.1. The requirements in Γ may similarly provide multiple specifica-
tions for the same method, for the same reasons. This also allows requirement
specifications to be collected from different modules.

We may express that a program variable w is not changed by a method using
the specification pw “ z, w “ zq where z is a logical variable. For convenience,
this kind of specification will be abbreviated to readonly w in the sequel (gen-
eralized to one or more variables). The use of this assertion restricts the set
of assignable variables and is critical in the rely-guarantee setting as explained
in [9]: It implicitly defines the set of program variables that may be changed by
a call (i.e., w in the rule).

2.1.1. Bank Example
To motivate the use of uninterpreted predicates, we consider an example

of different versions of a bank account in LWJ, using class inheritance. We
first provide a LWJ version of the example with annotated method declarations
in Figure 3. Consider a simple banking system where the interface IAccount
defines the visible methods, namely deposit and withdraw. The functionalities of
the deposit and withdraw methods will be realized by the update method, with
different redefinitions in different subclasses. Class CBase provides the basic
functionalities of methods update, deposit, and withdraw. In subclass CFee, the
update method is redefined such that a fee is associated with each withdraw. The
subclass CLimit extends class CFee and constrains the minimum amount that
an account’s balance must have. We use the notation super.m in a subclass to
refer to method m as defined in the superclass.

In class CBase the call to update is late bound, so we do not know at rea-
soning time which definition of update the code is referring to. Thus we cannot
characterize the behavior of such a late bound call by a (concrete) specification;
however, we may state a minimal requirement such as

(bal==bal’, !result ñ bal==bal’)

to express that the balance is not changed when the method is unsuccessful (i.e.,
when the method returns false). Here bal’ is a logical variable used to capture
the initial value of bal. Reasoning about late bound calls to update can then be
based on this minimal requirement of update. This explains the requirements
used in methods withdraw and deposit. For this style of reasoning, one should be
clear about which specifications define minimal requirements (by some suitable
syntax), and for each definition of update it must be shown that the minimal
requirements follow from the given specification of that specific definition.

Note that the calls of form super.update are not late bound, so in the sub-
classes CFee and CLimit the required specifications of the update methods are

6

interface IAccount {
boolean deposit(int x);
boolean withdraw(int x);

}

class CBase implements IAccount {
int bal = 0;

boolean update(int x){
bal = bal + x; return true;

} guar{(bal==bal’, result ^ bal==bal’+x)}

boolean deposit(int x){
boolean b=false; if(xě0){b=update(x);} return b;

} guar{(bal==bal’, !result ñ bal==bal’)}
req{update:{(bal==bal’, !result ñ bal==bal’)}}

boolean withdraw(int x){
boolean b=false; if(xě0){b=update(´x);} return b;

} guar{(bal==bal’, !result ñ bal==bal’)}
req{update: {(bal==bal’, !result ñ bal==bal’)}}

}

class CFee extends CBase {
int fee = 1;

boolean update(int x){
boolean b;
if(x<0){b=super.update(x´fee);}
else{b=super.update(x);}
return b;

} guar{ (xă0 ^ bal==bal’, result ^ bal==bal’+(x´fee)),
(xě0 ^ bal==bal’, result ^ bal==bal’+x),
readonly fee}

req{super.update: {(bal==bal’, result ^ bal==bal’+x)}}
}

class CLimit extends CFee {
int limit = 0;

boolean update(int x){ boolean b = false;
if(bal+xąlimit){b=super.update(x);} return b;

} guar{ (bal+xďlimit ^ bal==bal’, !result ^ bal==bal’),
(bal+x>limit ^ xă0 ^ bal==bal’, result ^ bal==bal’+(x´fee)),
(bal+x>limit ^ xě0 ^ bal==bal’, result ^ bal==bal’+x),
readonly limit}

req{super.update: {(xă0 ^ bal==bal’, result ^ bal==bal’+(x´fee)),
(xě0 ^ bal==bal’, result ^ bal==bal’+x)}}

}

Figure 3: A version of the Bank example without use of uninterpreted predicates.

7

the same as the guaranteed specification of the update method in the corre-
sponding superclass. In class CBase, the deposit and withdraw methods have
more than one method specification in the guarantee clause. This is done for
convenience, to make each specification simple by letting the two assertion pairs
have complementary preconditions.

2.2. A proof system for LWJ
A basic proof system for LWJ is given in Figure 4. We conventionally express

judgements in this proof system as Γ $LWJ tpu s tqu (with a subscript LWJ on
the turnstile). Rules LWJ-assign, LWJ-skip, LWJ-new, and LWJ-return are axioms
for side-effect free assignments, skip, object creation, and return statements,
respectively. In Rule LWJ-new, freshpoq expresses that o is fresh in the sense
that no program variable equals o.

The inference rule LWJ-implication allows preconditions to be strengthened
and postconditions to be weakened. The rules LWJ-ifElse and LWJ-composition
are for conditional statements and sequential composition, respectively. Rules
LWJ-internal and LWJ-external are for internal and external method invocations.
In these two rules, the formal parameters x in the assertions p and q are substi-
tuted with actual parameters e, the variable result is substituted by the method’s
return value w, and the variable this is substituted by the object identity v.

Observe that the substitution of fresh names in the same syntactic category is
used to avoid name capture between scopes; e.g., w1 and w2 replace the names of
program variables w in the pre- and postconditions of LWJ-external. For internal
calls we can make assumptions about the value of fields, for external calls we
can not make assumptions about fields. This renaming is justified by our target
of a modular reasoning system. LWJ has been chosen such that its proof system
is sound and relative complete:

Theorem 1 (Soundness of LWJ proof system). The proof system for LWJ is
sound, i.e., Γ $LWJ tpu s tqu ñ Γ |ùLWJ tpu s tqu.

Proof. The proof follows from the related proof in [4], adapted to LWJ.

Theorem 2 (Relative completeness of LWJ proof system). The proof system
for the LWJ is relative complete, i.e., Γ |ùLWJ tpu s tqu ñ Γ $LWJ tpu s tqu.

Proof. The proof follows from the related proof in [10], adapted to LWJ.

3. Modular Reasoning With Uninterpreted Predicates

A general rely-guarantee technique which can deal with compositional rea-
soning for delta-oriented programs is presented in [9]. This approach introduces
so-called uninterpreted predicates; i.e., symbolic names are used as placeholders
for the pre- and postconditions of methods for which method binding cannot
be decided at reasoning time. The pre- and postconditions of a defined method
with calls to context-dependent methods, may contain occurrences of such un-
interpreted predicates. We now develop such an approach for LWJ in terms of
a new proof system denoted UJ.

8

LWJ-assign Γ $LWJ tq
w
e u w “ e tqu

LWJ-skip Γ $LWJ tqu skip tqu

LWJ-new Γ $LWJ t@o ¨ freshpoq ñ qwo u w “ new C tqu

LWJ-return Γ $LWJ tq
result
e u return e tqu

LWJ-implication
p1 ñ p Γ $LWJ tpustqu q ñ q1

Γ $LWJ tp
1ustq1u

LWJ-ifElse
Γ $LWJ tp^ eu s1 tqu Γ $LWJ tp^ eu s2 tqu

Γ $LWJ tpu if peq s1 else s2 fi tqu

LWJ-composition
Γ $LWJ tpu s1 tgu Γ $LWJ tgu s2 tqu

Γ $LWJ tpu s1; s2 tqu

LWJ-internal
pmpN xq : pp, qqq P Γ

Γ $LWJ tp
x,y
e,y1u w “ mpeq tqx,y,result

e,y2,w u

LWJ-external
pmpN xq : pp, qqq P Γ

Γ $LWJ tp
w, this, x
w1, v, e u w “ v.mpeq tqw, this, x, result

w2,v, e,w u

Figure 4: Proof rules for LWJ.

3.1. The Assertion Language
The syntax for annotated method definitions for UJ is shown in Figure 5.

Assertions au differ from the assertions a of Section 2 in that au may contain
uninterpreted predicates u and explicit substitutions σ over assertions au. Un-
interpreted predicates u are conventionally capitalized (e.g., P and Q). Unin-
terpreted predicates play the role of placeholders in symbolic assumptions and
represent the pre- and postconditions of methods where the exact specifications
are unknown at reasoning time. It is easy to see that the assertions a in the
proof system LWJ (language of Figure 2) form a subset of the annotations au.
An assertion which does not contain any occurrences of uninterpreted predicate
variables, is called concrete.

Explicit substitutions σ, which bind assignable program variables w to as-
sertions au, are defined in terms of how they reduce to regular substitutions for
concrete assertions.

Definition 3.1 (Explicit substitution). Let a be a concrete assertion, au1 and
au2 be assertions with uninterpreted predicates, w a program variable, and e an
expression. Define explicit substitution inductively over assertions, as follows:

arw :“ es ô aw
e

pau1 op au2qrw :“ es ô pau1rw :“ esq op pau2rw :“ esq.

9

AMD ::“MD sp annotated method declarations
sp ::“ guar tapu req trequ method contracts
ap ::“ pau, auq method specifications
req ::“m : tapu requirements
au ::“ e | z | result | oppauq | u | auσ assertions
u ::“ P | Q | ... uninterpreted predicate variables
σ ::“ rw :“ as explicit concrete substitutions

Figure 5: Annotated method declarations for the UJ proof system.

Explicit substitution reduces to textual substitution for concrete assertions.
Explicit substitution cannot be reduced for uninterpreted predicates. For mul-
tiple explicit substitutions with disjoint variables w and w1, we have

paurw :“ esqrw1 :“ e1s ô aurw,w1 :“ ew
1

e1 , e1s.

(Otherwise, the substitutions must be done left-to-right; e.g., aurx :“ e1srx :“
e2s is aurx :“ e2s.) We now define ground substitutions for assertions au as
follows:

Definition 3.2 (Ground substitution). A ground substitution τ : u Ñ a is
defined inductively over assertions au as follows:

aτ “ a
oppauqτ “ oppauτq

uτ “
"

a if τpuq “ a
u otherwise

auστ “ auτσ

We say that a ground substitution concretizes an assertion au if auτ is con-
crete. By extension, we will call a proof context Γ concrete if its method specifi-
cations are pairs of concrete assertions and we say that a substitution concretizes
a proof context if it makes all assertions in the proof context concrete. We let
Γτ denote the proof context Γ concretized by the ground substitution τ . The
validity of assertions with uninterpreted predicates can now be defined in terms
of the possible extensions into concrete assertions.

Definition 3.3 (Validity of assertions). Let au be an assertion and τ be a
ground substitution which concretizes au. An assertion au is valid if and only if
auτ is valid for any such τ :

|ù au ô @τ ¨ |ù auτ.

It is easy to see from Definition 3.3 that uninterpreted predicates are implic-
itly quantified over the entire formula; e.g., in the formula P^ Qñ P_ Q, the
two occurrences of P denote two occurrences of the same formula, and similarly
for Q.

10

interface IAccount {
boolean deposit(int x);
boolean withdraw(int x);

}

class CBase implements IAccount {
int bal = 0;
boolean update(int x){

bal = bal + x; return true;
} guar{(bal==bal’, result ^ bal==bal’+x)}

boolean deposit(int x){
boolean b=false; if(xě0){b=update(x);} return b;

} guar{(xă0 ^ bal==bal’, !result ^ bal==bal’),
(xě0 ^ P, Q)}

req{update:{(P,Q)}}

boolean withdraw(int x){
boolean b=false; if(xě0){b=update(´x);} return b;

} guar{(xă0 ^ bal==bal’, !result ^ bal==bal’),
(xě0 ^ P[x:=´x], Q[x:=´x])}

req{update: {(P,Q)}}
}

Figure 6: Class inheritance with uninterpreted predicates.

3.1.1. The Bank Example Revisited
A main complication in reasoning about classes and inheritance is the prob-

lem of late binding. A method call made in a class (textually speaking) may
bind to a redefinition of the method belonging to a subclass that is designed
later. For such a call there need not be a fixed contract that is known at the
time when the enclosing method is defined.

We may therefore use the idea of uninterpreted predicates to express a pre-
liminary specification for the call. The body of the defined method can be
analyzed under the assumption of such specifications for each method m called
in the body.

For a call to m where a concrete method specification is known at the time
when the enclosing method is defined, one may use the concrete specification.
However, one must then verify that each redefinition of m actually conforms
with this fixed specification (as for behavioral subtyping [22]). For methods
with specifications using uninterpreted predicates there is no such verification
obligation, but reasoning results will in general depend on the uninterpreted
predicates.

Figure 6 extends the banking example of Example 2.1.1 with assertions which
make use of uninterpreted predicate variables. Here we only show the part of
the code which differs from the previous version. The classes CFee and CLimit
are as before, so only class CBase is presented.

The full class hierarchy is not yet known while reasoning about class CBase

11

and the calls to update in class CBase are late bound. Hence, the method con-
tract of the deposit method contains uninterpreted predicates capturing a sym-
bolic method specification of the unknown method update (i.e., update:{(P,Q)}).
The withdraw method follows the same reasoning approach. The use of uninter-
preted symbols allows us to postpone the decision of specifying specific proper-
ties of update. The instantiation of the uninterpreted predicates is postponed
until the binding is known, allowing the reasoning system to be adaptable to
any compilable implementations.

Note that we also define a concrete method specification

(xă0 ^ bal==bal’, !result ^ bal==bal’)

which expresses that the balance is not changed when the input value x is
less than zero. This is a concrete specification for both methods deposit and
withdraw under the condition xă0. Concrete method specifications may be used
in contracts, alongside specifications with uninterpreted predicate symbols. In
particular, the concrete specification and reasoning done in Section 2.1.1 can
be included. Thus the use of UJ may be seen as an extension of behavioral
subtyping that provides more flexibility. UJ guarantees that the Java system, no
matter what the method binding is, will always satisfy the method specifications.
Verification aspects are explained in Section 3.2.1.

3.2. The Proof System UJ
The proof system UJ is given in Figure 7. We conventionally express judge-

ments in this proof system as Γ $UJ tpu s tqu (with a subscript UJ on the
turnstile). The UJ proof system resembles the LWJ proof system of Section 2,
except that it uses explicit substitutions and assertions p and q may now con-
tain uninterpreted predicates. The rules related to method invocations formalize
how to reason about uninterpreted predicates, which was outlined but not for-
malized in [9]. When analyzing a given method body, the method specification
pp, qq will be verified under the assumption of the requirements Γ of the method
contract. We allow Γ to contain uninterpreted predicates, which represent pre-
liminary method specifications for methods which are not yet known, as well as
concrete specifications for methods which are known. The assertions p and q
may contain uninterpreted predicates originating from the require clause Γ.

The proof rules in Figure 7 use explicit substitution because textual substitu-
tion is not possible on uninterpreted predicates. Observe that the substitutions
in the rules for internal and external calls represent changes in scope and erase
any knowledge of locally scoped variables. For rule UJ-internal, y’ and y” denote
fresh program variables. Similarly to the assertion language of Section 2, the
variable result can only be used in the postcondition. For simplicity, we do not
give rules in the reasoning system that specifically deal with recursive calls.

3.2.1. Verification of the Bank Example
We now consider the verification of the bank example from Section 3.1.1.

With the LWJ system and behavioral subtyping, we were not able to reason

12

UJ-assign Γ $UJ tqrw :“ esu w “ e tqu

UJ-skip Γ $UJ tqu skip tqu

UJ-new Γ $UJ t@o ¨ freshpoq ñ qrw :“ osu w “ new C tqu

UJ-return Γ $UJ tqrresult :“ esu return e tqu

UJ-implication
p1 ñ p Γ $UJ tpustqu q ñ q1

Γ $UJ tp
1ustq1u

UJ-ifElse
Γ $UJ tp^ eu s1 tqu Γ $UJ tp^ eu s2 tqu

Γ $UJ tpu if peq s1 else s2 fi tqu

UJ-composition
Γ $UJ tpu s1 tgu Γ $UJ tgu s2 tqu

Γ $UJ tpu s1; s2 tqu

UJ-internal
pmpN xq : pp, qqq P Γ

Γ $UJ tprx, y :“ e, y1su

w “ mpeq tqrx, y, result :“ e, y2,wsu

UJ-external
pmpN xq : pp, qqq P Γ

Γ $UJ tprw, this, x :“ w1, v, esu
w “ v.mpeq tqrw, this, x, result :“ w2, v, e,wsu

Figure 7: Proof rules for the UJ Language.

about late bound calls, apart from what follows from minimal requirements. The
UJ proof system makes modular reasoning of code reuse possible. Compared
to the LWJ proof system, the UJ proof system can verify each single method
without knowing how the method binding will proceed at runtime. The proof
can be reused under the various method bindings.

Using the UJ proof system for the bank example of Section 3.1.1, we can ver-
ify methods deposit and withdraw in class CBase without knowing which update
method will actually be invoked by deposit and withdraw at runtime. However,
in LWJ reasoning, specifications of all the methods should be concrete. Namely,
the specifications of the deposit and withdraw methods in CBase in Section 2.1.1
are valid for all the possible method bindings for update at reasoning time. This
is clearly challenging to achieve and therefore the specifications need to be very
weak. Hexsre we show the proof sketch of the deposit method in CBase, which
has one concrete specification and one with uninterpreted predicates P and Q.

• Method specification 1:
{x<0 ^ bal==bal’}
boolen b=false;
{x<0 ^ bal==bal’ ^ !b}

13

if(xě0){b=update(x);}
{x<0 ^ bal==bal’ ^ !b}
return b;
{!result ^ bal==bal’}

• Method specification 2:
{xě0 ^ P}
boolen b=false;
{xě0 ^ P ^ !b}

if(xě0){ {P ^ !b}
b=update(x);}
{Q[result:=b]}
return b;
{Q}

This proof can be done by the KeY theorem prover [1], which records the
proof of Java methods annotated with uninterpreted variables and concretizes
the proof later by replacing the uninterpreted predicate variables with concrete
method specifications. For example, the concretizedxs specifications of method
deposit in CFee are shown below:

(xă0 ^ bal==bal’, !result ^ bal==bal’)
(xě0 ^ bal==bal’, result ^ bal==bal’+x)

which are derived by replacing P and Q in the specifications of deposit with
the guaranteed specifications of update in CFee. The first concrete specification
expresses that the balance is not changed if the input data x is less than zero.
The second one expresses that x amount of money is deposited to the balance
when x is larger and equal to zero. The case for class CLimit is similar. Note that
when the exact class of object o is not known, for example o.deposit, we may
consider all possible implementation of deposit, given that the whole program
is known.

4. Soundness and Completeness of UJ

4.1. Soundness of UJ
The UJ proof system differs from the basic proof system for LWJ in its use of

uninterpreted predicate variables. Let $LWJ denote the proof system for LWJ
restricted so that there are no uninterpreted predicate variables, i.e., neither
assertions nor assumptions in Γ contain uninterpreted predicate symbols. For
$LWJ we may then use textual substitution instead of explicit substitution.

We want to prove soundness of the UJ proof system, in the sense that prov-
able results are valid results:

Γ $UJ tpu s tqu ñ Γ |ùUJ tpu s tqu

14

where |ùUJ denotes validity of the UJ system. Assumptions with uninterpreted
predicate variables need to be instantiated by concrete specifications such that
no uninterpreted predicate variables are left. This can be captured by replacing
assumption Γ to Γτ with some instantiation τ .

Definition 4.1 (Validity of UJ). Let p and q range over assertions in UJ, Γ
over proof contexts, and τ over ground substitutions which concretize p, q, and
Γ. The validity of a judgment Γ $UJ tpu s tqu, written Γ |ùUJ tpu s tqu, is
defined as follows:

Γ |ùUJ tpu s tqu ô @τ ¨ Γτ |ùLWJ tpτu s tqτu.

Theorem 3. Let p and q range over assertions in UJ, Γ over proof contexts,
and τ over ground substitutions which concretize p, q, and Γ. Then

Γ $UJ tpu s tqu ñ @τ ¨ Γτ $LWJ tpτu s tqτu.

Proof. The proof is by induction over the derivation in the UJ proof system.
Details can be found in AppendixA.

Soundness of the reasoning system for LWJ is stated in Theorem 1, from
which we know

Γτ $LWJ tpτu s tqτu ñ Γτ |ùLWJ tpτu s tqτu

for Γτ , pτ and qτ without uninterpreted symbols.
Thus in order to prove soundness of $UJ it suffices to prove

Γ $UJ tpu s tqu ñ Γτ $LWJ tpτu s tqτu for any τ

for Γτ , pτ , and qτ as above.

Theorem 4. The UJ proof system is sound, i.e., Γ $UJ tpu s tqu ñ Γ |ùUJ
tpu s tqu.

Proof. The proof follows from Definition 4.1 and Theorems 1 and 3:

Γ $UJ tpu s tqu

ó (by Theorem 3)

@τ ¨ Γτ $LWJ tpτu s tqτu

ó (by Theorem 1)

@τ ¨ Γτ |ùLWJ tpτu s tqτu

ó (by Definition 4.1)

Γ |ùUJ tpu s tqu

15

4.2. Relative Completeness of UJ
A system is complete if and only if all valid formulae can be derived from the

axioms and the inference rules of the system. Completeness results for program
verification systems are typically proven up to the completeness for underlying
logic; this is called relative completeness (the notion is attributed to Cook [7]).
We first prove that derivability in LWJ for all concretizations of a judgement in
UJ entails derivability in UJ, from which the completeness result follows.

Theorem 5. Let p and q range over assertions in UJ, Γ over proof contexts,
and τ over ground substitutions which concretize p, q, and Γ. Then

@τ ¨ Γτ $LWJ tpτu s tqτu ñ Γ $UJ tpu s tqu.

Proof. The proof is by induction over the derivation in the LWJ proof system.
Details can be found in AppendixB.

Theorem 6. The UJ proof system is complete, i.e., Γ |ùUJ tpu s tqu ñ Γ $UJ
tpu s tqu.

Proof. The proof follows from Definition 4.1 and Theorems 2 and 5:

Γ |ùUJ tpu s tqu

ó (by Definition 4.1)

@τ ¨ Γτ |ùLWJ tpτu s tqτu

ó (by Theorem 2)

@τ ¨ Γτ $LWJ tpτu s tqτu

ó (by Theorem 5)

Γ $UJ tpu s tqu

4.3. Adaptation from Multiple Specifications
A method may have requirements given by a set of assertion pairs describing

different or complimentary aspects of the method. This is convenient when a
method is called several times and the different calls require different assertion
pairs, but also when the requirement set of a method contains both concrete
assertion pairs and assertion pairs with uninterpreted symbols.

Reasoning about a method call may in general involve one or more assertion
pairs. The discussion so far is based on reasoning where only one requirement is
needed for each call. Below we explain briefly how this restriction can be lifted.
The following adaptation rule gives that from a set of assertion pairs (pi, qi) for
1 ď i ď N , we may for any assertion au derive an assertion pair with exactly au
as postcondition:

adaptation
Γ $UJ tpiu s tqiu for 1 ď i ď N

Γ $UJ t@u ¨
Ź

1ďiďN

p@zi ¨ pi ñ qirw :“ usq ñ aurw :“ usu s tauu

16

where u are fresh, zi the logical variables in (pi, qi), and w variables which may
be updated by the method. We assume that these variables can be statically
determined, which is ensured when adaptation is applied at the method level.
The rule allows us to combine the information embedded in several assertion
pairs for the same method. A further discussion on reasoning with multiple
assertion pairs is given in [?], including soundness and completeness issues.

5. Application to Code Reuse Mechanisms

To demonstrate the applicability of our framework, we consider how it can be
applied to different mechanisms for code reuse. We have used class inheritance to
explain the concepts in Sections 2 and 3 and applied the framework to a bank
account example that provides variations of functionalities to withdraw from
and deposit money to a bank account, as shown in Sections 2.1.1 and 3.1.1.
In this section, we consider two other code reuse mechanisms: delta-oriented
programming and traits. In contrast to class inheritance, these two mechanisms
can be characterized by the fact that the static binding of a method call is not
even known at verification time inside a given module. We will continue using
the bank account as the running example to illustrate our reasoning approach.

In the basic implementation of method withdraw, there are no limitations
to the amount of money one can withdraw from the account, meaning that the
balance may become negative. In addition, no extra fees are attached to this
operation. For the basic implementation of method deposit, any positive amount
can be deposited to the bank account. Both the deposit and withdraw meth-
ods use an update method to modify the account’s balance. In the subsequent
sections, we discuss how the implementation of the method update, under dif-
ferent code reuse mechanisms, will change the behaviour of money transaction.
For each mechanism, we first show the implementation of the example, then
the specification of all the methods, and finally the resulting, flattened software
program in LWJ, derived by compilation.

5.1. Delta-oriented Programming
We consider a core language for Delta-Oriented Programming (DOP) [28]

using a subset of the DeltaJ language of [33], including Delta-related mechanisms
and augmented with annotations.

A DOP software product line (SPL) is realized by a set of deltas encapsu-
lating modifications to object-oriented programs. Deltas can add, remove, or
modify classes. A particular program variant is obtained by applying a selected
set of deltas to the empty program in a given order. Note that an internal call
w “ originalpeq denotes a call to the previous version of the current method,
defined outside the enclosing Delta definition.

In DOP our bank example is expressed as a SPL where Base is a mandatory
feature, while Fee and Limit are optional features. We assume that we are always
reasoning over valid feature configurations.

17

feature Base, Fee, Limit
configurations Base
deltas

[DBase]
[DFee when Fee]
[DLimit when Limit]

Here, the when clause specifies for which feature configuration the delta has to
be applied; i.e., [DFee when Fee] implies that the delta DFee is applied when
the feature Fee is selected.

The code base of the Bank Account SPL is given as follows:

delta DBase{
adds class Account{
int bal = 0; // the balance
boolean update(int x){

bal = bal + x; return true;}

boolean deposit(int x){ // for increasing the balance
boolean b = false ;
if(x ě 0){b = update(x);} return b;}

boolean withdraw(int x){ // for decreasing the balance
boolean b = false;
if(x ě 0){b = update(´x);} return b;}

}
}

delta DFee{
modifies Account{
adds int fee = 1;
modifies boolean update(int x){
boolean b;
if(x < 0){b = original(x´fee);}
else{b = original(x);}
return b;}

}
}

delta DLimit{
modifies Account{
adds int limit = 0;
modifies boolean update(int x){
boolean b = false;
if(bal+x > limit){b=original(x);}
return b;}

}
}

The basic functionality of delta DBase consists of the methods update, deposit,
and withdraw. Delta DFee modifies the Account class by adding a new field fee
and by modifying method update such that it invokes the previous version of
method update by means of original. Similarly, DLimitmodifies the Account class

18

by adding a new field limit and by modifying method update. A particular bank
account product is derived by applying to DBase the optional deltas DLimit,
DFee, or both in a given order.

We demonstrate how uninterpreted predicates can make the verification scal-
able and reusable by verifying each delta in isolation. The uninterpreted predi-
cates are used as placeholders for the method contract of the invoked methods,
which are unknown at reasoning time. Consider the following specifications for
the deltas:

// Specifications of delta DBase:
update: guar{(bal==bal’, result ^ bal==bal’+x)}
deposit: guar{(xă0 ^ bal==bal’, !result ^ bal==bal’),

(xě0 ^ P, Q)}
req{update:{(P,Q)}}

withdraw: guar{(xă0 ^ bal==bal’, !result ^ bal==bal’)
(xě0 ^ P[x:=´x],Q[x:=´x])}

req{update: {(P,Q)}}

// Specifications of delta DFee:
update: guar{(xă0 ^ P[x:=x´fee], Q[x:=x´fee]),

(xě0 ^ P,Q),
readonly fee}

req{original: {(P,Q)}}

// Specifications of delta DLimit:
update: guar{(bal==bal’ ^ bal+x<=limit, !result ^ bal==bal’)

(bal+x>limit ^ P,Q),
readonly limit}

req{original: {(P,Q)}}

Here, the contract of the original method in delta DFee is original: {(P,Q)}.
Compared to class inheritance, the uninterpreted predicates of the original
method cannot be instantiated at reasoning time. It is not known which as-
sertions to substitute for P and Q; this depends on the ordering of deltas, which
is unknown at reasoning time.

Consider two different products A and B. Product A is formed by applying
the features in the order Base, Limit, and then Fee:

class Account {
int bal = 0; // the balance
int limit = 0;
int fee = 1;

boolean update’’(int x){bal = bal + x; return true;}

boolean update’(int x){
boolean b = false;
if(bal+x > limit){b=update’’(x);} return b;}

boolean update(int x){
boolean b;
if(x < 0){b = update’(x´fee);}

19

else{b = update’(x);}
return b;}

boolean deposit(int x){ boolean b = false;
if(x ě 0){b = update(x);} return b;}

boolean withdraw(int x){ boolean b = false;
if(x ě 0){b = update(´x);} return b;}

}

Product B is formed by applying the features in the order Base, Fee, and
then Limit:

class Account {
int bal = 0; // the balance
int limit = 0;
int fee = 1;

boolean update’’(int x){bal = bal + x; return true;}

boolean update’(int x){
boolean b;
if(x < 0){b = update’’(x´fee);}
else{b = update’’(x);}
return b;}

boolean update(int x){
boolean b = false;
if(bal+x > limit){b=update’(x);} return b;}

boolean deposit(int x){ boolean b = false;
if(x ě 0){b = update(x);} return b;}

boolean withdraw(int x){ boolean b = false;
if(x ě 0){b = update(´x);} return b;}

}

According to different application orders of the deltas DLimit and DFee, the
original call is replaced by calls to different implementations of method update.
Product A guarantees that the balance in the bank account is always larger
or equal to the limit, even when withdrawing money requires extra charge of
fee. However, the balance of the bank account in Product B may be lower than
limit due to the extra fee by withdrawing money. This can be observed by the
concretized specifications listed below, in which we only show the cases when
money is successfully withdrawn.

• Product A:
(xă0 ^ bal+(x-fee)ąlimit ^ bal==bal’, result ^ bal==bal’+(x-fee))

• Product B:
(xă0 ^ bal+xąlimit ^ bal==bal’, result ^ bal==bal’+(x-fee))

20

Note that the uninterpreted predicates reasoning approach is modular and
not affected by the application order of deltas, although the output results of
different products may vary. For example, the update method in DFee guaran-
tees that the extra fee will be charged when withdrawing money, and there is no
requirement for depositing money. This functionality is independent of whether
a minimum amount of balance is required or not.

5.2. Traits
Traits are so-called pure units of behavior [14, 30]: A trait contains a set

of methods that can be used to extend the functionality of a class. Traits are
completely independent from any class hierarchy and can be composed in an
arbitrary order. In case of a naming collision, when multiple traits to be used
by a class have methods with the same name, the programmer must explicitly
disambiguate which of those methods will be used in the class (e.g., by renaming
or deleting conflicting method definitions); thus manually solving the diamond
problem of multiple inheritance.

The same bank account example can be implemented as follows using traits:

interface IAccount {
boolean deposit(int x);
boolean withdraw(int x);

}

trait TFunc is {
boolean update(int x); // required method
boolean deposit(int x){
boolean b=false;
if(xě0){b=update(x);} return b;}

boolean withdraw(int x){
boolean b=false;
if(xě0){b=update(´x);} return b;}

}

trait TBase is {
int bal = 0; // required field
boolean update(int x){

bal = bal + x; return true;}
}

trait TFee is {
int bal = 0; int fee = 1; // required fields
boolean update’(int x); // required method
boolean update(int x){
boolean b = false;
if(x<0){b=update’(x´fee);}
else{b=update’(x);} return b;}

}

trait TLimit is {
int limit = 0; // required field

21

boolean update’(int x); // required method
boolean update(int x){
boolean b = false;
if(bal+xąlimit){b=update’(x);}
return b;}

}

Here, the trait TFunc provides the basic implementation of deposit and withdraw.
The update method, invoked by methods deposit and withdraw in TFunc, is
implemented in traits TBase, TFee, and TLimit. Depending on the selected
combination of these traits, the derived class provides different functionalities
of update.

Let us now consider the following specifications of traits:

// Specifications of trait TFunc:
deposit: guar{(xă0 ^ bal==bal’, !result ^ bal==bal’),

(xě0 ^ P, Q)}
req{update:{(P,Q)}}

withdraw: guar{(xă0 ^ bal==bal’, !result ^ bal==bal’)
(xě0 ^ P[x:=´x],Q[x:=´x])}

req{update: {(P,Q)}}

// Specifications of trait TBase:
update: guar{(bal==bal’, result ^ bal==bal’+x)}

// Specifications of trait TFee:
update: guar{(xă0 ^ P[x:=x´fee], Q[x:=x´fee]),

(xě0 ^ P,Q),
readonly fee}

req{update’: {(P,Q)}}

// Specifications of trait TLimit:
update: guar{(bal==bal’ ^ bal+x<=limit, !result ^ bal==bal’)

(bal+x>limit ^ P,Q),
readonly limit}

req{update’: {(P,Q)}}

Observe that the specifications are almost identical to the ones for deltas in
Section 5.1 , except that the original method has been renamed to update’ in
the case of traits. The uninterpreted predicates of the update’ method cannot
be instantiated at reasoning time, but our reasoning system guarantees that for
any compilable trait-based program, the program will satisfy the specification.

Below we show the definition of one possible trait-based class:

class CLimitFeeAcc implements IAccount
by {int bal; int fee; int limit;} and TFunc +

(TBase[update renameTo update’’]) +
(TFee[update renameTo update’][update’ renameTo update’’]) +
TLimit

where class CLimitFeeAcc is formed by the combination of traits TFunc, TBase,
TFee, and TLimit. In class CLimitFeeAcc, the update method is exactly the same

22

as the one in TLimit which invokes the updatemethod in TFee that finally invokes
the update method in TBase. For this purpose we keep the latest version of the
update method (i.e., the one in TLimit) unchanged, and rename the other update
methods according to the invocation order. Namely, in TFee the update and
update’ methods are renamed to update’ and update”, respectively, and in TBase
the update method is renamed to update”. The flattened class CLimitFeeAcc is
shown below:

class CLimitFeeAcc implements IAccount {
int bal = 0; int fee = 1; int limit = 0;
boolean update’’(int x){

bal = bal + x; return true;}

boolean update’(int x){
boolean b=false;
if(x<0){b=update’’(x´fee);}
else{b=update’’(x);}
return b;}

boolean update(int x){
boolean b = false;
if(bal+xąlimit){b=update’(x);}
return b;}

boolean deposit(int x){
boolean b=false;
if(xě0){b=update(x);} return b;}

boolean withdraw(int x){
boolean b=false;
if(xě0){b=update(´x);} return b;}

}

This is exactly the same as the class Account of Product A in Section 5.1 derived
by applying the deltas in the order DBase, DFee, and then DLimit.

6. Related Work

Modular reasoning of software components communicating with each other
by method calls can be achieved by contract-based verification [23]. The work
of [15] provides modular verification for delta-oriented programming based on
Liskov’s principle [22] in which the new method contracts must be substitutable
for the old ones or, equivalently, only code changes that respect the existing con-
tract are permitted. However, this is too restrictive in practice because already
very simple code modifications tend to break existing contracts. In separation
logic, abstract predicates [24] are defined as abbreviations for specific proper-
ties to enforce modular reasoning in the sense of information hiding. Inside a
module the definition of the abstract properties can be expanded, while outside
a module, only the abstract predicates can be used. The semantics of Java is
not oriented towards modular reasoning. However, the principle of behavioral

23

subtyping, minimal requirements, abstract predicates, and ghost variables [?],
can be applied to somewhat restricted subsets of Java, as well as techniques for
refactoring [?]. For instance, the Java verifier of the KeY system [1] is based
on inheritance of specifications from superclasses, thereby following behavioral
subtyping.

The reasoning approach in [9] allows each delta module in delta-oriented pro-
gramming to be verified in isolation, based on symbolic assumptions for calls to
methods which may be defined in other delta modules. When product variants
are generated from delta modules, these assumptions are instantiated by the
actual guarantees of the method in the considered product variant. Hähnle et
al. introduce abstract method calls for code reuse [16], using JML style specifi-
cation [20]. The JML specification for each method is divided into two sections.
The abstract section consists of placeholders for pre-and postconditions and
assignable clauses. Each placeholder must be defined by concrete formulas and
terms in the definitions section. This approach is implemented in the KeY the-
orem prover [1] by Pelevina [6] . The proof for calls to unknown methods using
abstract contracts can be partially proved by KeY; i.e., proof branches cannot
be completely closed due to the use of placeholders, but they can be cached for
proof reuse. Once the invoked method is known, the abstract predicates can be
instantiated with concrete predicates, and the symbolic execution in KeY can
continue from the open goals of the cached partial proof. Therefore, the partial
proofs can be reused under the context of variant method bindings. Proof replay
reduces the verification effort. The implementation of the framework of proof
repositories [5] in KeY improves the reusability and efficiency of proof reuse. It
is well suited for object-oriented inheritance and late binding.

Compard to this line of work, our contribution is a generalization which con-
siders not only class inheritance but also delta-oriented programming and traits.
The calculus using uninterpreted predicates for modular reasoning can be used
in all three kinds of structured code reuse. We provide a Hoare-style reasoning
system based on uninterpreted predicates for the setting of LWJ, and prove
soundness and completeness of this reasoning system. The paper [8] introduces
a deductive proof system for traits-based object-oriented language. The proof
approach is incremental. Compared with our work, the specification may be
modified according to the need of code reuse and composition; however, reveri-
fication might be needed. A proof system for adaptable class hierarchies [13] is
based on lazy behavioral subtyping. The proof system is incremental in the sense
that reverification is avoided for methods that are not called by internal calls in
the same class or subclass. But the reasoning for internal calls is based on min-
imal requirements that might be broken by modifications of these methods in
a subclass. Compared with these previous works, our reasoning system is more
flexible in the sense that we do not need reverification. An alternative approach
to reasoning about object-oriented inheritance is based on separate hierarchies
for code reuse, through class inheritance, and for inheritance of behavioral spec-
ification, through interfaces [? ?]. This approach avoids the restrictions of
behavioral subtyping and without enforcing minimal requirements, and avoids
uninterpreted symbols. Invariants of superclasses may be violated in a subclass;

24

in such cases, reverification of inherited code is required.
Our system gives limited power for reasoning about external calls. In [13],

reasoning about external calls are based on behavioral specifications in inter-
faces. The use of communication histories allows stronger method specifications
than in our system. This approach can be applied and adapted to our setting
as well.

7. Conclusion

Code reuse and modular software development greatly simplify the main-
tenance of complex software and shorten the development process until a new
or enhanced release of a software program can be deployed. To support a de-
velopment process based on flexible reuse and adaptation of software modules,
it is crucial to be able to statically reason about the behavior of each module
before composing reused modules into programs. However, standard software
verification systems impose restrictions on software reuse and redefinition, such
as behavioral subtyping. This paper has proposed a proof system which sup-
ports modular reasoning with an open-world assumption and which goes beyond
behavioral subtyping. The proof system enables modular reasoning about lan-
guages with very flexible code reuse mechanisms in the context of object-oriented
programming, as demonstrated in the paper by application to unrestricted class
inheritance, delta-oriented programming, and trait-based programming. The
approach taken is oriented towards class-wise verification. The LWJ system is
compositional when contracts for external calls can be expressed in the asser-
tion language. The UJ system improves on this by allowing modular reasoning
based on symbolic contracts, to be instantiated at a later stage, possibly when
the whole program is known. This means that with UJ one can verify each
part of the software separately, based on the symbolic contracts. Interfaces and
communication histories may be used to avoid talking about the overall system
state, for instance in the style of [10]. Scalability of the contract instantiations
depends on the chosen reuse mechanism. One possible approach to implement
our reasoning system is to extend a weakest pre-condition calculus to generate
assertions with uninterpreted predicate symbols and explicit substitutions, and
using solver technologies such as SMT to find possible ground substitutions.

Since the environment of a piece of code is subject to change, the proposed
proof system makes assumptions about the environment explicit in terms of
uninterpreted predicates, which are instantiated in a second phase of reasoning
(i.e., at compile time). Technically, we formulate the proof system with uninter-
preted predicates for an object-oriented core language and relate the proposed
proof system to a standard proof system for the same language. Whereas re-
lated work on incremental proof systems prove soundness in terms of internal
consistency, this paper establishes both soundness and relative completeness of
the proposed proof system by relating it to similar, established properties of a
standard proof system for the same language.

25

Acknowledgement

We gratefully thank the anonymous reviewers for their constructive feedback.

References

[1] Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P. H., Ulbrich,
M. (Eds.), 2016. Deductive Software Verification - The KeY Book - From
Theory to Practice. Vol. 10001 of Lecture Notes in Computer Science.
Springer.
URL http://dx.doi.org/10.1007/978-3-319-49812-6

[2] America, P., January 1989. A behavioural approach to subtyping in object-
oriented programming languages. Tech. Rep. 443, Philips Research Labo-
ratories.

[3] America, P., 1991. Designing an object-oriented programming language
with behavioural subtyping. In: de Bakker, J. W., de Roever, W.-P., Rozen-
berg, G. (Eds.), Foundations of Object-Oriented Languages (REX Work-
shop). Vol. 489 of LNCS. Springer-Verlag, pp. 60–90.

[4] Apt, K. R., de Boer, F. S., Olderog, E., 2009. Verification of Sequential
and Concurrent Programs. Texts in Computer Science. Springer.
URL http://dx.doi.org/10.1007/978-1-84882-745-5

[5] Bubel, R., Damiani, F., Hähnle, R., Johnsen, E. B., Owe, O., Schaefer, I.,
Yu, I. C., 2016. Proof repositories for compositional verification of evolv-
ing software systems - managing change when proving software correct. T.
Foundations for Mastering Change 1, 130–156.
URL http://dx.doi.org/10.1007/978-3-319-46508-1_8

[6] Bubel, R., Hähnle, R., Pelevina, M., 2014. Fully abstract operation con-
tracts. In: Margaria, T., Steffen, B. (Eds.), Leveraging Applications of
Formal Methods, Verification and Validation. Specialized Techniques and
Applications - 6th International Symposium, ISoLA 2014, Imperial, Corfu,
Greece, October 8-11, 2014, Proceedings, Part II. Vol. 8803 of Lecture
Notes in Computer Science. Springer, pp. 120–134.
URL http://dx.doi.org/10.1007/978-3-662-45231-8_9

[7] Cook, S. A., 1978. Soundness and completeness of an axiom system for
program verification. SIAM J. Comput. 7 (1), 70–90.
URL https://doi.org/10.1137/0207005

[8] Damiani, F., Dovland, J., Johnsen, E. B., Schaefer, I., 2014. Verifying
traits: an incremental proof system for fine-grained reuse. Formal Aspects
of Computing 26 (4), 761–793.
URL http://dx.doi.org/10.1007/s00165-013-0278-3

26

http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-1-84882-745-5
http://dx.doi.org/10.1007/978-3-319-46508-1_8
http://dx.doi.org/10.1007/978-3-662-45231-8_9
https://doi.org/10.1137/0207005
http://dx.doi.org/10.1007/s00165-013-0278-3

[9] Damiani, F., Owe, O., Dovland, J., Schaefer, I., Johnsen, E. B., Yu, I. C.,
2012. A transformational proof system for Delta-oriented programming. In:
16th International Software Product Line Conference, SPLC ’12, Salvador,
Brazil - September 2-7, 2012, Volume 2. ACM, pp. 53–60.
URL http://doi.acm.org/10.1145/2364412.2364422

[10] Din, C. C., Owe, O., 2014. A sound and complete reasoning system for
asynchronous communication with shared futures. J. Log. Algebr. Meth.
Program. 83 (5-6), 360–383.
URL http://dx.doi.org/10.1016/j.jlamp.2014.03.003

[11] Dovland, J., Johnsen, E. B., Owe, O., Steffen, M., 2010. Lazy behavioral
subtyping. Journal of Logic and Algebraic Programming 79 (7), 578–607.

[12] Dovland, J., Johnsen, E. B., Owe, O., Steffen, M., 2011. Incremental rea-
soning with lazy behavioral subtyping for multiple inheritance. Science of
Computer Programming 76 (10), 915–941.

[13] Dovland, J., Johnsen, E. B., Owe, O., Yu, I. C., 2015. A proof system for
adaptable class hierarchies. Journal of Logical and Algebraic Methods in
Programming 84 (1), 37 – 53, special Issue: The 23rd Nordic Workshop
on Programming Theory (NWPT 2011) & Special Issue: Domains X, In-
ternational workshop on Domain Theory and applications, Swansea, 5-7
September, 2011.
URL http://www.sciencedirect.com/science/article/pii/
S2352220814000595

[14] Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A. P., 2006.
Traits: A mechanism for fine-grained reuse. ACM Transactions on Pro-
gramming Languages and Systems 28 (2), 331–388.

[15] Hähnle, R., Schaefer, I., 2012. A Liskov principle for Delta-oriented pro-
gramming. In: Leveraging Applications of Formal Methods, Verification
and Validation. Technologies for Mastering Change - 5th International Sym-
posium, 2012, Part I. Vol. 7609 of LNCS. Springer, pp. 32–46.
URL http://dx.doi.org/10.1007/978-3-642-34026-0_4

[16] Hähnle, R., Schaefer, I., Bubel, R., 2013. Reuse in software verification by
abstract method calls. In: Bonacina, M. P. (Ed.), Automated Deduction -
CADE-24 - 24th International Conference on Automated Deduction, Lake
Placid, NY, USA, June 9-14, 2013. Proceedings. Vol. 7898 of Lecture Notes
in Computer Science. Springer, pp. 300–314.
URL http://dx.doi.org/10.1007/978-3-642-38574-2_21

[17] Hähnle, R., Schafer, I., 2012. A Liskov principle for delta-oriented pro-
gramming. In: International Conference on Formal Verification of Object-
oriented Software (FoVeOOS 2011). Vol. 7421 of LNCS. Springer-Verlag,
pp. 32–46.
URL https://doi.org/10.1007/978-3-642-34026-0_4

27

http://doi.acm.org/10.1145/2364412.2364422
http://dx.doi.org/10.1016/j.jlamp.2014.03.003
http://www.sciencedirect.com/science/article/pii/S2352220814000595
http://www.sciencedirect.com/science/article/pii/S2352220814000595
http://dx.doi.org/10.1007/978-3-642-34026-0_4
http://dx.doi.org/10.1007/978-3-642-38574-2_21
https://doi.org/10.1007/978-3-642-34026-0_4

[18] Igarashi, A., Pierce, B. C., Wadler, P., 2001. Featherweight Java: a minimal
core calculus for java and GJ. ACM Trans. Program. Lang. Syst. 23 (3),
396–450.
URL http://doi.acm.org/10.1145/503502.503505

[19] Leavens, G. T., Naumann, D. A., 2006. Behavioral subtyping, specification
inheritance, and modular reasoning. Technical Report 06-20a, Department
of Computer Science, Iowa State University, Ames, Iowa.

[20] Leavens, G. T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller,
P., Kiniry, J., Chalin, P., 2008. JML reference manual.

[21] Liskov, B., 1987. Data abstraction & hierarchy. In: Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’87). ACM, pp. 17–34, in SIGPLAN Notices 22(12).

[22] Liskov, B. H., Wing, J. M., Nov. 1994. A behavioral notion of subtyping.
ACM Transactions on Programming Languages and Systems 16 (6), 1811–
1841.

[23] Meyer, B., 1992. Applying “design by contract”. IEEE Computer 25 (10),
40–51.
URL http://dx.doi.org/10.1109/2.161279

[24] Parkinson, M. J., Bierman, G. M., 2005. Separation logic and abstrac-
tion. In: Palsberg, J., Abadi, M. (Eds.), Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, January 12-14, 2005. ACM, pp.
247–258.
URL http://doi.acm.org/10.1145/1040305.1040326

[25] Pierik, C., de Boer, F. S., 2005. A proof outline logic for object-oriented
programming. Theoretical Computer Science 343 (3), 413–442.

[26] Poetzsch-Heffter, A., Müller, P., 1999. A programming logic for sequential
Java. In: Swierstra, S. D. (Ed.), 8th European Symposium on Programming
Languages and Systems (ESOP’99). Vol. 1576 of LNCS. Springer-Verlag,
pp. 162–176.

[27] Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N., 2010. Delta-
oriented Programming of Software Product Lines. In: SPLC. Vol. 6287 of
LNCS. Springer, pp. 77–91.

[28] Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N., 2010. Delta-
oriented programming of software product lines. In: Bosch, J., Lee, J.
(Eds.), Software Product Lines: Going Beyond - 14th International Con-
ference, SPLC 2010, Jeju Island, South Korea, September 13-17, 2010.
Proceedings. Vol. 6287 of Lecture Notes in Computer Science. Springer,
pp. 77–91.
URL http://dx.doi.org/10.1007/978-3-642-15579-6_6

28

http://doi.acm.org/10.1145/503502.503505
http://dx.doi.org/10.1109/2.161279
http://doi.acm.org/10.1145/1040305.1040326
http://dx.doi.org/10.1007/978-3-642-15579-6_6

[29] Schaefer, I., Bettini, L., Damiani, F., 2011. Compositional Type-Checking
for Delta-Oriented Programming. In: AOSD 2011. ACM, pp. 43–56.

[30] Schärli, N., Ducasse, S., Nierstrasz, O., Black, A., 2003. Traits: Compos-
able units of behavior. In: Proc. European Conference on Object-Oriented
Programming (ECOOP). Vol. 2743 of LNCS. Springer-Verlag, pp. 248–274.

[31] Soundarajan, N., Fridella, S., 1998. Inheritance: From code reuse to rea-
soning reuse. In: Devanbu, P., Poulin, J. (Eds.), Proc. Fifth International
Conference on Software Reuse (ICSR5). IEEE Computer Society Press, pp.
206–215.

[32] Strnisa, R., Sewell, P., Parkinson, M. J., 2007. The Java module system:
core design and semantic definition. In: Gabriel, R. P., Bacon, D. F., Lopes,
C. V., Jr., G. L. S. (Eds.), Proceedings of the 22nd Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,
Canada. ACM, pp. 499–514.
URL http://doi.acm.org/10.1145/1297027.1297064

[33] http://deltaj.sourceforge.net/, 2011. DeltaJ website http://
deltaj.sourceforge.net/.

29

http://doi.acm.org/10.1145/1297027.1297064
http://deltaj.sourceforge.net/
http://deltaj.sourceforge.net/
http://deltaj.sourceforge.net/

AppendixA. Proof of Theorem 3

The proof is by induction over the construction of the $UJ proof; we show
that for any such derivation we can construct corresponding derivations in
LWJ. Thus, derivations by means of UJ-axioms constitute the base case and
the induction hypothesis expresses the entailment of LWJ-derivability from UJ-
derivability for the premisses of the UJ-rule. In the different cases of the proof,
we let p and q range over assertions in UJ, Γ over proof contexts, and τ over
ground substitutions which concretize p, q, and Γ.

Base Case. The base case covers the axioms of the inference system: UJ-assign,
UJ-skip, UJ-new, and UJ-return. The proof proceeds by cases for each of the
axioms.

Case UJ-assign. We consider the derivation of Γ $UJ tqrw :“ esu w “ e tqu. By
axiom LWJ-assign we know that

@τ ¨ Γτ $LWJ tqτ
w
e u w “ e tqτu,

Since the assertion qτ is concrete, we now have, by Definition 3.1, that

@τ ¨ Γτ $LWJ tqτ rw :“ esu w “ e tqτu.

and then, by Definition 3.2,

@τ ¨ Γτ $LWJ tqrw :“ esτu w “ e tqτu.

Other base cases. The proofs for the axioms UJ-skip, UJ-new, and UJ-return
follows the same pattern as the proof for rule UJ-assign.

Induction Step. For the induction step of the proof, we consider the inference
rules UJ-implication, UJ-ifElse, UJ-composition, UJ-internal, and UJ-external. In
these proof cases, we rely on an induction hypothesis (IH) expressing that Γ $UJ
tpu s tqu ñ @τ ¨ Γτ $LWJ tpτu s tqτu holds for any premisses tpu s tqu of the
inference rule.

Case UJ-implication. We have derived Γ $UJ tp
1u s tq1u from the premisses

p1 ñ p, Γ $UJ tpustqu, and q ñ q1. By the IH, we have

@τ ¨ Γτ $LWJ tpτustqτu

and, by Definition 3.3, we know that @τ ¨ p1τ ñ pτ and @τ ¨ qτ ñ q1τ . By
applying LWJ-implication, we can conclude

@τ ¨ Γ $LWJ tp
1τustq1τu.

Case UJ-ifElse. We have derived Γ $UJ tpu if peq s1 else s2 fi tqu from the
premisses Γ $UJ tp^eu s1 tqu and Γ $UJ tp^ eu s2 tqu, so, by the IH, we know
that that @τ ¨Γτ $LWJ tpp^ eqτu s1 tqτu and @τ ¨Γτ $LWJ tpp^ eqτu s2 tqτu.

30

From Definition 3.2, we know that eτ “ e and eτ “ e, so this is equivalent
to @τ ¨ Γτ $LWJ tpτ ^ eu s1 tqτu and @τ ¨ Γτ $LWJ tpτ ^ eu s2 tqτu. We can
now apply the rule LWJ-ifElse, to derive

@τ ¨ Γ $LWJ tpτu if peq s1 else s2 fi tqτu.

Case UJ-composition. Here, p1 is an assertion in UJ. We have derived Γ $UJ
tpu s1; s2 tqu from the premisses Γ $UJ tpu s1 tp1u and Γ $UJ tp

1u s2 tqu, so, by
the IH, we know that @τ ¨ Γτ $UJ tpτu s1 tp1τu and @τ ¨ Γτ $UJ tp

1τu s2 tqτu.
We can then apply LWJ-composition to conclude

@τ ¨ Γ $LWJ tpτu s1; s2 tqτu.

Case UJ-internal. Here, y1 and y2 are assumed to be fresh variable names. We
have derived

Γ $LWJ tpry, x :“ y1, esu w “ mpeq tqry, x, result :“ y2, e,wsu

from the premise pmpN xq : pp, qqq P Γ. Consequently, by applying substitituions,
we know that @τ ¨ pmpN xq : ppτ, qτqq P Γτ . We can then apply LWJ-internal to
derive

@τ ¨ Γτ $LWJ tpτ
y,x
y1,eu w “ mpeq tqτy,x,result

y2,e,w u.

Since pτ and qτ are concrete, Definition 3.1 gives us

@τ ¨ Γτ $LWJ tpτ ry, x :“ y1, esu w “ mpeq tqτ ry, x, result :“ y2, e,wsu

and, from Definition 3.2, we get

@τ ¨ Γτ $LWJ tpry, x :“ y1, esτu w “ mpeq tqry, x, result :“ y2, e,wsτu.

Case UJ-external. Here, w1 and w2 are assumed to be fresh variable names. We
have derived

Γ $UJ tprw, this, x :“ w1, v, esu w “ v.mpeq tqrw, this, x, result :“ w2, v, e,wsu

from the premise pmpN xq : pp, qqq P Γ. By applying substitutions, we know that
@τ ¨ pmpN xq : ppτ, qτqq P Γτ . We can then apply LWJ-external to derive

@τ ¨ Γτ $LWJ tpτ
w,this,x
w1,v,e u w “ v.mpeq tqτw,this,x,result

w2,v,e,w u.

Since pτ and qτ are concrete, Definition 3.1 gives us

@τ ¨Γτ $LWJ tpτ rw, this, x :“ w1, v, esu w “ v.mpeq tqτ rw, this, x, result :“ w2, v, e,wsu

and, from Definition 3.2, we get

@τ ¨Γτ $LWJ tprw, this, x :“ w1, v, esτu w “ v.mpeq tqrw, this, x, result :“ w2, v, e,wsτu.

31

AppendixB. Proof of Theorem 5

The proof is by induction over the construction of the $LWJ proof; we show
that for any such derivation we can construct a corresponding derivation in
UJ. Thus, derivations by means of LWJ-axioms constitute the base case and
the induction hypothesis expresses the entailment of UJ-derivability from LWJ-
derivability for the premises of the LWJ-rule. In the different cases of the proof,
we let p and q range over assertions in UJ, Γ over proof contexts, and τ over
ground substitutions which concretize p, q, and Γ.

Base Case. The base case covers the axioms of the inference system: UJ-assign,
UJ-skip, UJ-new, and UJ-return. The proof proceeds by cases for each of the
axioms.

Case LWJ-assign. Assume that

@τ ¨ Γτ $LWJ tpτu w “ e tqτu.

From LWJ-assign, we know that

@τ ¨ Γτ $LWJ tqτ
w
e u w “ e tqτu.

where qτw
e is the weakest possible precondition. Then, by LWJ-implication, rel-

ative completeness gives us

@τ ¨ $ pτ ñ qτw
e

which, by Definitions 3.1 and 3.2, is equivalent to

@τ ¨ $ pτ ñ qrw :“ esτ

From soundness of first-order logic and Definition 3.3, we then get

|ù pñ qrw :“ es

and, by relative completeness, $ pñ qrw :“ es. By UJ-assign we know that

Γ $UJ tqrw :“ esu w “ e tqu

and UJ-implication of the UJ reasoning system, we derive

Γ $UJ tpu w “ e tqu.

Other base cases. The proofs for the axioms UJ-skip, UJ-new, and UJ-return
follow the same pattern as the one for axiom UJ-assign.

32

Induction Step. When we consider the inference rules of LWJ, our induction
hypothesis (IH) expresses that @τ ¨ Γτ $LWJ tpτu s tqτu ñ Γ $UJ tpu s tqu for
any premises @τ ¨ Γτ $LWJ tpτu s tqτu of the inference rule in the LWJ proof
system.

Case LWJ-implication. Assume that

@τ ¨ Γτ $LWJ tpτu s tqτu

is derived from the premises @τ ¨ $ pτ ñ p1τ , @τ ¨ $ q1τ ñ qτ , and @τ ¨Γτ $LWJ
tp1τu s tq1τu. It follows directly from the IH that

Γ $UJ tp
1u s tq1u.

From the soundness of first-order logic, we know that @τ ¨ |ù pτ ñ p1τ and
@τ ¨ |ù q1τ ñ qτ , and then, by Definition 3.3, |ù p ñ p1 and |ù q1 ñ q. It
then follows by relative completeness that $ p ñ p1 and $ q1 ñ q, and by
UJ-implication, we derive

Γ $UJ tpu s tqu.

Case LWJ-ifElse. Assume

@τ ¨ Γτ $LWJ tpτuif peq s1 else s2 fitqτu.

By rule LWJ-ifElse, we have

@τ ¨ Γτ $LWJ tpτ ^ eus1tqτu

and
@τ ¨ Γτ $LWJ tpτ ^ eus2tqτu

From Definition 3.2, we know that pτ ^ e “ pp^ eqτ and pτ ^ e “ pp^ eqτ ,
so by the IH we get

Γ $UJ tp^ eus1tqu

and
Γ $UJ tp^ eus2tqu

By UJ-ifElse we can then derive

Γ $UJ tpuif peq s1 else s2 fitqu.

Case LWJ-composition. Assume

@τ ¨ Γτ $LWJ tpτus1; s2tqτu.

By LWJ-composition, we have

@τ ¨ Γτ $LWJ tpτus1tgτu

33

and
@τ ¨ Γτ $LWJ tgτus2tqτu.

By the IH, we get
Γ $UJ tpus1tgu

and
Γ $UJ tgus2tqu.

By UJ-composition, we then derive

Γ $UJ tpus1; s2tqu.

Case LWJ-internal. Assume

@τ ¨ Γτ $LWJ tpry, x :“ y1, esτuw “ mpeqtqry, x, result :“ y2, e,wsτu.

By Definition 3.2, this is equivalent to

@τ ¨ Γτ $LWJ tpτ ry, x :“ y1, esuw “ mpeqtqτ ry, x, result :“ y2, e,wsu.

By LWJ-internal we know that

@τ ¨mpN xq : ppτ, qτq P Γτ

and, by Definition 3.2,
mpN xq : pp, qq P Γ.

By rule UJ-internal, we can then conclude

Γ $UJ tpry, x :“ y1, esuw “ mpeqtqry, x, result :“ y2, e,wsu.

.

Case LWJ-external. Assume

@τ ¨ Γτ $LWJ tp
f,y,this,x
f1,y1,v,e

τuw “ v.mpeqtqτ f,y,this,x,result
f2,y2,v,e,w

τu.

By Definition 3.2, this is equivalent to

@τ ¨ Γτ $LWJ tpτ
f,y,this,x
f1,y1,v,e

uw “ v.mpeqtqτ f,y,this,x,result
f2,y2,v,e,w

u.

By rule LWJ-external, we know that

mpN xq : ppτ,qτq P Γτ

and, by Definition 3.2,
mpN xq : pp,qq P Γ.

By rule UJ-internal, we can then conclude

Γ $UJ tprf, y, this, x :“ f1, y1, v, esuw “ v.mpeqtqrf, y, this, x, result :“ f2, y2, v, e,wsu.

34

	Introduction
	The Language and Proof System of Lightweight Java
	The Assertion Language
	Bank Example

	A proof system for LWJ

	Modular Reasoning With Uninterpreted Predicates
	The Assertion Language
	The Bank Example Revisited

	The Proof System UJ
	Verification of the Bank Example

	Soundness and Completeness of UJ
	Soundness of UJ
	Relative Completeness of UJ
	Adaptation from Multiple Specifications

	Application to Code Reuse Mechanisms
	Delta-oriented Programming
	Traits

	Related Work
	Conclusion
	Proof of Theorem 3
	Proof of Theorem 5

