Løsning til Eks. 2005:

La \(l \) være linjen mellom \(A = (1:1:0) \) og \(B = (0:1:1) \).

Hvor er det dype punktet til \(l \)?

La \(m \) være linjen gitt \(2x - y + 3z = 0 \). Finn skjæringspunktet \(C \) mellom \(l \) og \(m \).

Linjen mellom \(A \) og \(B \) er gitt ved ligningen

\[
\begin{vmatrix}
 x & y & z \\
 1 & 1 & 0 \\
 0 & 0 & 1
\end{vmatrix} = x - y + 2z = 0.
\]

Dersom \(l \) er det dype punktet til \(l \) gitt \((1:-1:1) \) er \(P \).

Andre del for løsning på teorin.

Hva merde det å løse ligningene for \(l \) og \(m \) samtidig? Slik er å bruke dypekerter.

Nemlig, sevrigne

- \(C \) ligger på \(l \) og \(m \)
- \(C \) ligger på \(l \) og \(m \)
- \(l \) og \(m \) ligger på \(C \) er dypekerter.

Dersom vi fikk finne det dype punktet til \(m \), og så fins linjen mellom \(l' \) og \(m' \). Dette er \(C' \). Dersom er \(C = (C')' \).
m, hør dwelt punkt (2: -1: 3) = m v

Dann er linjen mellom \(l^\vee = (1:-1:1) \) og \(m^\vee \) gitt y

\[
\begin{vmatrix}
 x & y & z \\
 2 & -1 & 3 \\
 1 & -1 & 1
\end{vmatrix} = 2x + y - z = 0
\]

Dette er linjen \(C^\vee \), som har dwelt punkt \((2:1:-1)=C \).
Som er skjæringspunkt mellom \(l \) og \(m \).

(1b) For linke punkt \(D \) er kryssforholdet definert?

\((A,B, C \text{ som } i \infty)\).

Fin D slik at \((AB \; CD) = 3\).

Kryssforholdet er definert for punkt på en linje, føi vi nev knøre av
\(D \in l \).

Vi ser at \(C = 2A - B \).
\(\text{Let } D = xA + yB \)

\((AB \; CD) = \frac{-1 \cdot x}{2 \cdot y} = \frac{-1\cdot 2}{2} = 3 \)

\(\text{Let } \frac{x}{y} = \frac{3}{3} \)

\(\text{Sett } x = 6y \). Sett \(y = 7 \)
Rørelse 5

\[D = 6A + B \]
\[= (6:6:0) + (0:1:1) \]
\[= (6:7:1) \]

Oppgave 4 (Eksempel 2009)

La \(P^2 = P^2 \) være den reelle projektive planet.

a) La \(a \) være linje i \(P^2 = P^2 \) med

lineær

\[x + 2y + z = 0 \]

og la \(b \) være linje \(x - y + z = 0 \). Finn skjærpunktet mellom \(a \) og \(b \).

b) La \(Q = (1:3:0) \) og finn en likning for linjen
c) gjennom \(P \) og \(Q \).

c) Med notasjon som obove, finn en tredje linje \(\ell \) slik at de duale punkter til linjene \(a \) og \(b \) er konvexe.

a) Vi gir sen i fremgang. La \(a \) og \(b \) være skjærpunkter mellom linjene \(\ell \) og duale til å finne linjer mellom punkter. Vi

har at \(a^v = (1:2:1) \) og \(b^v = (1:-1:1) \). Linja mellom
det er gitt ved
\[
\begin{vmatrix}
x & y & z \\
1 & 2 & 1 \\
1 & -1 & 1 \\
\end{vmatrix} = 3x - 0 = 3z
\]
\[
= 3x - 3z
\]
\[
= 3(x - z)
\]

Dette ligner for dueto punkti \((1:0:1)\), som dommer til
størst på to mellom \(a\) og \(b\). Det er lett å sjekke at dette stemmer
for to \((1:0:1)\) ligg på
bete a og b.

\[\text{B) Vi skal finne ligning for linjen gjennem } P \text{ og } Q. \text{ Dette gir }
\]
\[
\det \begin{vmatrix}
x & y & z \\
1 & 0 & -1 \\
1 & 3 & 0 \\
\end{vmatrix} = 3x - y + 3z.
\]

\[\text{C) La } d \text{ ha dueto punkti } A, B, C \text{ og } (1:2:1), (1:-1:1), (3:-1:3).
\]
\[\begin{align*}
A & \quad \quad B \\
C & \quad \quad C
\end{align*}
\]
\[\text{Vi setter } C = -\frac{2}{3} A + \frac{11}{3} B. \quad \text{Formel: } C
\]
\((AB, CD) = \frac{\frac{4}{3} \cdot 5}{\frac{2}{3} \cdot x} = \frac{-110}{2x} = \frac{-11}{2} z = -1\)

Hvis \(D = yA + xB\). Sett \(z = \frac{y}{x}\).

Formulere \(z = \frac{2}{11}\). Sett \(x = 1\). Dermed får

\[D = \frac{2}{11} A + B = \frac{2}{11} \left(1:2:1\right) + \left(1:-1:1\right)\]
\[= \left(\frac{13}{11}: -\frac{7}{11}: \frac{13}{11}\right) = \left(13:-7:13\right).\]

(ikkje så pent som!)

\underline{Oppgave 3 (eksamen 2012)}
\[\overline{p} = \overline{p'} = R\overline{p'}\]

\(\overline{p} = \overline{p'} \rightarrow \) liggende på projisjonpanelet.

1) Finn skjærpunkt til linje med ligning:
\[2x_0 + 3x_1 - 6x_2 = 0\]
\[-x_0 + x_1 + 3x_2 = 0\]

2) La \(P = (9:0:4)\) og finn ligning for linjen \(l\) gjennom \(P\) og \(Q\).

3) I hvor mange punkter til \(l\) skjærer linjen
\[x_1 x_2 - x_0^2 = 0 \]

Giv en ligning af snitlet af \(l \) og hyglets linje mod der affine plane hvor \(x_2 \neq 0 \).

a) Dette har vi gjort ten ganske allerede. Det er linjen

for dualpunkt \((2; 3; -6)\)

og andre har \((-1; 1; 3)\).

Linjen mellem den er givet som

\[
\begin{vmatrix}
 x_0 & x_1 & x_2 \\
 2 & 3 & -6 \\
 -1 & 1 & 3 \\
\end{vmatrix} = 15x_0 + 5x_2 = 0
\]

dvs. linjen for dualpunkt \((15; 0; 5) = (3; 0; 1)\),

og dette er styringspunkter til linjene vi ser nu.

b) Samme som øver.

Det

\[
\begin{vmatrix}
 x_0 & x_1 & x_2 \\
 3 & 0 & 1 \\
 0 & 0 & 4 \\
\end{vmatrix} = -3x_1 = 0
\]

Formul er \(l \) gitt ved \(x_1 = 0 \).
Solve the system $x_1 = 0$, $\forall x_0$.

If $x_0 = 0$, then $x_1 = 0$, and let $x = (0:0:1)$.

If $x_2 \neq 0$, then linearize around $x_1 = x_0^2$ and set $x_1 = 0$.

Témo titi fi

\[x_1 = x_0^2 \]

\[x_1 = 0 \]