Reconstructing supersymmetric particle masses from collider experiments

Jørgen Eriksson Midtbø
Master student, theory section, Department of Physics, University of Oslo

Faggruppemøte for subatomær fysikk og astrofysikk,
Norsk fysisk selskap, 30.04.2014
Outline

- Supersymmetry (again)
- Dark matter (again)
- SUSY at the LHC, chain decays
- A method for inferring SUSY particle masses
- My project & outlook
What is Supersymmetry?

An extension of the Poincaré algebra of spacetime by Majorana spinor charges...
What is Supersymmetry?

- ...or simply: Many new particles!
- Everybody gets (at least) one heavy friend – differ by spin and mass
- Please supply particle names with s'es and -ino's to own liking
 - Squarks, sleptons, gauginos, (gravitino)
R-parity

• Usually assumed: SUSY particles cannot decay to only SM particles – number of SUSY particles conserved

• This implies the existence of a stable \textit{Lightest SUSY Particle} (LSP)
Dark matter (1)

• We know it exists, but what is it?
• Popular candidate: Weakly Interacting Massive Particle (WIMP)
• SUSY can provide us with a WIMP particle: the Neutralino
 – A spin-1/2 fermion with zero electric charge, SUSY-partner of Z-boson/photon/Higgs.
 – Couples to weak force and gravitation only
 – Cannot decay because of R-parity (it's the LSP)
Dark matter (2)

- SUSY as dark matter – as good a reason as any to look for SUSY!
- Use the Large Hadron Collider at CERN to look.
- It is invisible – i.e. looks a lot like neutrinos
SUSY production (and decays) at LHC

• The LHC collides protons, so the force is strong (with this one)
• Squarks are strong SUSY particles, so we expect production of squark-antisquark pairs
• A squark will typically decay in a chain down to the LSP (neutralino 1)
My favourite decay chain

- $X \rightarrow 1 + Y$, $Y \rightarrow 2 + Z$, $Z \rightarrow 3 + N$
- E.g. (i.e.)
 - squark \rightarrow quark + lepton + antilepton + neutralino1

1. squark
2. quark
3. lepton
4. antilepton
5. neutralino
What can be measured?

- The LHC detectors measure energy and momentum of produced particles
- But some particles are invisible (neutrino, neutralino)
- Infer these from energy conservation
The method

- Imagine that my chain has been identified in some LHC event
 - (in practice difficult: Two hadron jets, four leptons and two missing energies, plus background)
- Would really like to know the mass of the SUSY particles!
My favourite article

Mass determination in sequential particle decay chains

Bryan Webber

Cavendish Laboratory, J.J. Thomson Avenue, Cambridge, UK
E-mail: webber@hep.phy.cam.ac.uk

ABSTRACT: A simple method is proposed for determining the masses of new particles in collider events containing a pair of decay chains (not necessarily identical) of the form $Z \rightarrow Y + 1$, $Y \rightarrow X + 2$, $X \rightarrow N + 3$, where 1,2 and 3 are visible but N is not. Initial study of a possible supersymmetric case suggests that the method can determine the four unknown masses in effectively identical chains with good accuracy from samples of a few tens of events.

KEYWORDS: Hadronic Colliders, Supersymmetry Phenomenology, Beyond Standard Model.

arXiv:0907.5307v2
\[\tilde{q} \rightarrow \tilde{\chi}_2^0 + q, \quad \tilde{\chi}_2^0 \rightarrow \tilde{\ell}^\pm + \ell^\mp, \quad \tilde{\ell}^\pm \rightarrow \tilde{\chi}_1^0 + \ell^\pm, \] \quad (1.1)
Kinematical constraints (1)

- "Small width approximation"
 => everything is on-shell

\[
\begin{align*}
(p_1 + p_2 + p_3 + p_4)^2 &= M_Z^2 \\
(p_2 + p_3 + p_4)^2 &= M_Y^2 \\
(p_3 + p_4)^2 &= M_X^2 \\
p_4^2 &= M_N^2
\end{align*}
\]
Kinematical constraints (2)

Leaving aside the last equation, the others give three linear constraints on the invisible 4-momentum p_4:

\[-2p_1 \cdot p_4 = M_1^2 - M_2^2 + 2p_1 \cdot p_2 + 2p_1 \cdot p_3 + m_1^2 \equiv S_1\]
\[-2p_2 \cdot p_4 = M_2^2 - M_3^2 + 2p_2 \cdot p_3 + m_2^2 \equiv S_2\]
\[-2p_3 \cdot p_4 = M_3^2 - M_4^2 + m_3^2 \equiv S_3\]

(2.2)

Similarly for the lower chain:

\[-2p_5 \cdot p_8 = M_5^2 - M_6^2 + 2p_5 \cdot p_6 + 2p_5 \cdot p_7 + m_5^2 \equiv S_5\]
\[-2p_6 \cdot p_8 = M_6^2 - M_7^2 + 2p_6 \cdot p_7 + m_6^2 \equiv S_6\]
\[-2p_7 \cdot p_8 = M_7^2 - M_8^2 + m_7^2 \equiv S_7\]

(2.3)

We also have the missing transverse momentum constraints:

\[p_T^4 + p_T^8 = p_T^\text{miss} \equiv S_4\]
\[p_T^5 + p_T^8 = p_T^\text{miss} \equiv S_5\]

(2.4)

Let us make an 8-vector of the invisible 4-momenta,

\[\mathbf{P} = (p_T^4, p_T^5, p_T^6, E_4, p_T^6, p_T^7, p_T^8, E_8)\]

(2.5)
Kinematical constraints (3)

\[
\begin{pmatrix}
 p_1^x & p_1^y & p_1^z & -E_1 & 0 & 0 & 0 & 0 \\
 p_2^x & p_2^y & p_2^z & -E_2 & 0 & 0 & 0 & 0 \\
 p_3^x & p_3^y & p_3^z & -E_3 & 0 & 0 & 0 & 0 \\
 1/2 & 0 & 0 & 0 & 1/2 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & p_5^x & p_5^y & p_5^z & -E_5 \\
 0 & 0 & 0 & 0 & p_6^x & p_6^y & p_6^z & -E_6 \\
 0 & 0 & 0 & 0 & p_7^x & p_7^y & p_7^z & -E_7 \\
 0 & 1/2 & 0 & 0 & 0 & 1/2 & 0 & 0 \\
\end{pmatrix}
\]

\[
(p_4^2)_n = (P_4^2 - P_1^2 - P_2^2 - P_3^2)_n = M_N^2
\]

\[
(p_8^2)_n = (P_8^2 - P_5^2 - P_6^2 - P_7^2)_n = M_N^2
\]

(2.13)
Mass fitting

- Make a guess for the four/eight unknown SUSY masses
- Minimize the on-shell requirement

\[
\xi^2(M) = \sum_n [(p^2_4)_n - M^2_N]^2 + \sum_n [(p^2_8)_n - M^2_{N'}]^2
\]

- Should be zero for the correct mass hypothesis
Promising:
Promising

- Expect few SUSY events at LHC based on current data
- This method can give good fits based on few tens of events
My project

• Get more familiar with this...
• Look into the technical aspects: Matrix inversion with stochastic variables, optimizing the fitting function, …
• Play with Monte Carlo
Summary

- Really, really want to find SUSY at LHC
- Have a novel method to infer the new masses
 - Works with few events
- Lots of linear algebra and Monte Carlo ahead! :-)

30.04.2014
On a side note...

Norwegians, please note: The deadline for submitting tax returns is today!
Thank you

Questions?
Comments?