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Abstract

We define a probabilistic propositional logic
for making a finite, ordered sequence of
decisions under uncertainty by extending
an existing probabilistic propositional logic
with expectation and utility-independence
formulae. The language has a relatively sim-
ple model semantics, and it allows a sim-
ilarly compact representation of decision
problems as influence diagrams. We present
a calculus and show that it is complete at
least for the type of reasoning possible with
influence diagrams.

1 Introduction
Decision making under uncertainty is a central topic of ar-

tificial intelligence, and a number of approaches have been
suggested to deal with it, some based on logic [Boutilier,
1994], some on graphical representations like influence di-
agrams [Howard and Matheson, 1981], some on Markov
chains etc. Our research in this area was initially motivated
by our work in the CODIO project on COllaborative De-
cision Support for Integrated Operations.1 As part of that
project, we developed a support system for operational de-
cisions in petroleum drilling using Bayesian networks (BN)
modeling [Giese and Bratvold, 2010]. We discovered a num-
ber of features that would have been useful in this applica-
tion, but which are missing in BN-based approaches:

• the possibility to work with incomplete information
about probabilities and utilities, e.g. intervals instead
of precise numbers

• an explicit treatment of time

• a well-integrated treatment of continuous values in-
stead of just discrete values

∗A version of this logic has been published at NIK(Norsk in-
formatikkonferanse) 2011. This new version distinguishes between
two different notions of expected utility, and adds reasoning about
independence of the expected utility on decision options and uncer-
tainties. Moreover, in this paper we provide a more detailed tech-
nical discussion of the logic.
Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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• the ability to reason about several decision makers with
different knowledge of the situation

These observations prompted us to consider logic and
logical deduction as a basis for decision support. First, the
semantics of a logic ensures that any unknown information
can simply be omitted. Nothing is ever deduced from
something that is not explicitly stated. Second, logics are
known to be relatively easy to combine. Although we have
not done this yet, it is natural to consider combinations of
our approach with first-order logic (for reasoning about
continuous values), temporal logic, knowledge logic, etc.
Additionally, we consider the problem of a logical axioma-
tization of decision making to be an interesting (theoretical)
problem in its own right.

Our first contribution in this spirit was a probabilistic
logic with conditional independence formulae [Ivanovska
and Giese, 2011] extending the probabilistic logic of [Fa-
gin, Halpern, and Megiddo, 1990]. Expressing (conditional)
independence is a prerequisite for a compact representation
of probabilistic models, and one of the main reasons for the
success of Bayesian networks. We showed that similar com-
pactness and equivalent reasoning can be achieved with a
purely logical notation. That work was not concerned with
decisions, but only with the modelling of uncertainty.

The present paper extends our previous work by present-
ing a logic to describe and reason about a fixed, finite se-
quence of decisions under uncertainty with the aim of max-
imizing the expected utility of the outcome.

The most closely related existing approach is that of influ-
ence diagrams (IDs) [Howard and Matheson, 1981], proba-
bly the most successful formalism for modelling decision
situations. We show that our logic, together with a suitable
calculus, allows to derive all conclusions that an ID model
permits. It goes slightly beyond the possibilities of IDs in
that it allows more fine-grained statements about conditional
independence, namely that some variables are independent
only if certain options are chosen.

Compared to other logic-based approaches (see Sect. 8) to
treating decision making with a logic, our approach is rela-
tively simple: it incorporates reasoning about multiple deci-
sions, observations, and independence, with a fairly straight-
forward model semantics, no need for frame axioms, and a
rather small inference system. This makes it a good candi-
date for future combination with other types of reasoning.



2 Sequences of Decisions
To avoid confronting the reader with the technicalities of
petroleum engineering, our original application domain, we
will use a running example from a more familiar field:

Example 1 (Organic garden) Consider a situation in which
a gardener has to decide whether to apply an antifungal or
an antibacterial treatment to her organic garden that shows
symptoms of both fungal and bacterial diseases. Based on
some examinations, she only knows that there is a 40%
chance that the garden is affected by a fungal disease. (We
assume that the garden has either a fungal or a bacterial dis-
ease, but not both.) Even if she treats the plants with a wrong
treatment, there is still a 20% chance that their condition
will get better. If the choice of the treatment is right, there
is a 90% chance of improvement. A week after applying the
chosen treatment the gardener observes the condition of the
plants, after which she decides whether to continue with the
same treatment, or to switch to the other one. Each decision
she makes affects the utility (which is the profit – the earned
income decreased by the cost of the treatments) in different
ways depending on the actual condition of the garden, which
is uncertain. In addition, let’s assume that the income of a
healthy garden (with two correct treatments applied) is 20;
the income of a partially healed garden is 12 when the first
treatment is correct and the second is wrong, and is 10 in the
opposite case. A garden treated with two wrong treatments
gives no income. Also assume that the cost of the antifungal
treatment is 2, and the cost of the antibacterial one is 1.

In general, we consider the scenario that a fixed, finite
sequence of n decisions has to be taken. Each of the deci-
sions requires the decision maker to commit to exactly one
of a finite set of options. We can therefore represent the de-
cisions by a sequence A = (A1, . . . , An) of n finite sets
that we call option sets. For instance, in the above example
we have a sequence of two decisions, hence two option sets,
A = ({t1, t2}, {c1, c2}), one containing two elements rep-
resenting the two treatment options at the beginning: t1 –
the antifungal, and t2 – the antibacterial one; and the other
containing an element for each of the two possible continu-
ations of the treatment at the second decision point, i.e. c1
– continue with the same treatment, and c2 – switch to the
other one. There are also elements of uncertainty in the sce-
nario described above, namely the unknown disease of the
plants, and the condition of the plants after the first treat-
ment that depends in a non-deterministic way on the disease
and the applied treatment. Both of these uncertainties are of
a binary type, i.e. they have only two states (fungi or bacte-
ria for the disease, better or worse for the condition), so for
each element of the uncertainty, we use a propositional letter
to represent one of its states and its negation to represent the
other one. Ex: F stands for “fungi”, and ¬F stands for “bac-
teria.” In general, we assume we have a set of propositional
letters P = {X1, X2, . . .}.

Before each of the decisions is taken, some observations
might be available to guide the decision maker. E.g., be-
fore taking the second decision in the above example, it can
be observed whether the condition of the plants is better or

worse. Observations are in general represented by subsets of
propositional letters, or, more precisely by fixing a sequence
O = (O1, . . . , On) where each Ok ⊆ P is a set of observ-
able propositional letters, i.e. a set of letters whose value
is known before taking the k-th decision. We require this
sequence to be monotonic, O1 ⊆ · · · ⊆ On, to reflect that
everything that can be observed before each decision, can be
observed later. Later, the semantics of expectation formulae
(and the EXP rules based on it), will be defined in a way that
ensures that observations made before some decision do not
change at later decisions, i.e. we model a “non-forgetting
decision maker”.

We call Ω = (P,A,O) a decision signature. In the fol-
lowing, we show how we build our formulae over a given
decision signature.

3 Syntax
To express the element of chance in our logic, we follow
the approach of [Fagin, Halpern, and Megiddo, 1990]. They
define a probabilistic propositional logic by augmenting the
propositional logic with linear likelihood formulae

b1`(ϕ1) + · · ·+ bk`(ϕk) ≥ b,
where b1, . . . , bk, b are real numbers, and ϕ1, . . . , ϕk are
pure propositional formulae, i.e. formulae which do not
themselves contain likelihood formulae. The term `(ϕ) rep-
resents the probability of ϕ being true, and the language al-
lows expressing arbitrary linear relationships between such
probabilities. 2

In Example 1 we can use the formula `(F ) = 0.4 to rep-
resent that the probability of the plants having fungal dis-
ease is 0.4 (this formula is an abbreviation for (`(F ) ≥
0.4) ∧ (−`(F ) ≥ −0.4). The probability of the plants’ con-
dition after the first week of treatment however is something
that we can not express with such formulae. To be able to
express probabilistic statements that depend on the decisions
that are taken, our logic uses likelihood terms indexed by se-
quences of decision options. The intention is that these like-
lihood terms represent the likelihoods of propositional state-
ments being true after some decision making (choosing of
options) has taken place. We define general likelihood terms
and formulae with the following definitions.

Definition 1 Given a sequence of option sets A =
(A1, . . . , An), and a subsequence S = (Ai1 , . . . , Aik) for
some 1 ≤ i1 < · · · < ik ≤ n, an S-option sequence is a
sequence σ = ai1 . . . aik with aij ∈ Aij for j = 1 . . . k. An
A-option sequence is also called a full option sequence.

In the following text, we will use σ to denote option se-
quences, and δ for full option sequences.

We introduce the likelihood term `δ(ϕ) to represent the
likelihood of ϕ after the options in δ (all decisions) have

2They actually use w (as “weight”) instead of ` in [Fagin,
Halpern, and Megiddo, 1990] since they use it to represent both
probability and inner probability there. We use ` as in [Halpern,
2003] since, as we will see later in the semantics, we only consider
the measurable probability structures and in that case ` stands for
likelihood (probability).



taken place. Sometimes the likelihood of a statement does
not depend on all the choices one makes, but just on a subset
of them, so we give a more general definition of a likelihood
term and likelihood formulae:

Definition 2 A general likelihood term is defined as:
`σ(ϕ),

where σ is an option sequence, and ϕ is a pure propositional
formula. A linear likelihood formula has the following form:

b1`σ1(ϕ1) + · · ·+ bk`σk(ϕk) ≥ b, (1)
where σ1, . . . , σk are S-option sequences for the same sub-
sequence S of A, ϕ1, . . . , ϕk are pure propositional formu-
lae, and b, b1, . . . , bk are real numbers. 3

A general likelihood term represents the likelihood (prob-
ability) of ϕ being true, if the options in σ are chosen; the
linear likelihood formula represents a linear relationship be-
tween such likelihoods, and implies that that relationship
holds independently of the options taken for any decision
not mentioned in the σis. The definition is restricted to op-
tion sequences for the same sequence of option sets S, since
it is difficult to define a sensible semantics without this re-
striction. For instance, in the context of the organic gar-
den example, the formula 2`t1(B ∧ F ) + 0.5`t2(B) ≥ 2
is a well-formed likelihood formula; whilst 2`t1(B ∧ F ) +
0.5`t1c1(B) ≥ 2 is not.

We can also define conditional likelihood formulae as ab-
breviations, like [Fagin, Halpern, and Megiddo, 1990] do:
`σ(ϕ|ψ) ≥ (≤)c iff `σ(ϕ ∧ ψ) − c`σ(ψ) ≥ (≤)0 where σ
is an option sequence, and ϕ and ψ are pure propositional
formulae. `σ(ϕ|ψ) = c is defined as a conjunction of the
corresponding two inequality formulae. Now we can repre-
sent the statement about the probability of the plants getting
better after applying treatment t1 conditional on the fact that
they had fungal disease with the formula `t1(B|F ) = 0.9.

It is well-known, e.g. from the literature on Bayesian
networks, that the ability to express conditional indepen-
dence between events can lead to very compact represen-
tations of the joint probability distributions of sets of events.
Therefore, to the language of propositional and linear like-
lihood formulae defined so far, we add conditional inde-
pendence formulae (CI-formulae) like the ones proposed by
[Ivanovska and Giese, 2011], but indexed with option se-
quences. Their general form is the following:

Iσ(X1,X2|X3), (2)
where Xi, for i = 1, 2, 3 are sets of propositional letters, and
σ is an option sequence. It expresses that knowledge about
the propositions in X2 does not add knowledge about the
propositions in X1 whenever the value of the propositions
in X3 is known and the options in σ are chosen.

Since our logic is intended to describe decision problems
that contain an element of uncertainty, we follow the stan-
dard approach of decision theory, which is to model a ra-
tional decision maker as an expected utility maximizer. To

3the resulting logic up to these formulae is structurally similar
to the multi-agent probabilistic logics of [Halpern, 2003], but with
option sequences instead of agents as modalities.

reason about the expected utility, we need to introduce a
new kind of formulae. Halpern in [Halpern, 2003] shows
how reasoning about the expected values of random vari-
ables can be included in a logic similarly to linear likelihood
terms. We cannot use this approach directly however, since
we need to include (1) the possibility to condition on obser-
vations made before taking decisions, and (2) the principle
of making utility maximizing decisions. On the other hand,
we only need to consider the expected value of one random
variable, namely the utility.

For a full option sequence δ, we introduce the term eδ(ϕ)
to represent the expected utility conditional on a fact ϕ. But
sometimes the expected utility can be independent of some
of the decisions. We represent that by introducing more gen-
eral expectation terms that do not necessarily include a full
option sequence in the subscript. We give the following for-
mal definition of expectation formulae:

Definition 3 An expectation formula is a formula of type:
eσ(ϕ) = c, (3)

where σ is an option sequence, ϕ is a pure propositional
formula, and c is a real number.

E.g., for representing the expected utility from a garden
that had a fungal disease, and received two weeks of anti-
fungal treatment, we can write et1c1(F ) = 16 (which is the
profit of the garden in this case, i.e. the income of 20 de-
creased by the cost of the two antifungal treatments). Miss-
ing decisions (i.e. non-full option sequences) in the expec-
tation formulae of Def. 3 are intended to express that the
expected utility is independent of the options chosen for the
missing decisions.

To reason about optimal decisions, we also need a differ-
ent notion, namely the expected utility under the assumption
that optimal (i.e. utility maximizing) decisions will be made
for all future decisions. The following definition introduces
“optimal expectation” terms ēa1...ak(ϕ) to capture this idea.
They denote the expected utility, conditional on ϕ, after the
initial options a1, . . . , ak have been chosen, assuming that
all future choices are made in such a way that the expected
utility is maximized. Unfortunately, it turns out to be diffi-
cult to define the semantics of such formulae for arbitrary
ϕ. To obtain a useful semantics, the formula ϕ that is con-
ditioned upon has to be required to be an “observable” for-
mula.

Definition 4 Given a propositional letter X , an X-literal is
either X or ¬X . An S-atom for some set S ⊆ P is a con-
junction of literals containing oneX-literal for eachX ∈ S.

An optimal expectation formula is a formula of type:
ēa1...ak(ϕ) = c, (4)

where ai ∈ Ai, i = 1, . . . , k, ϕ is an Ok-atom, and c is a
real number.

For instance, et1(>) = 4 means that the expected utility
when treatment t1 is chosen is 4, no matter how the treat-
ment is continued.4 This is clearly not the case in our exam-
ple. On the other hand, ēt1(>) = 4 means that the expected

4> is an Ok-atom, when Ok = ∅ (empty conjunction).



utility for t1 is 4, if it is followed by the best choice for
{c1, c2}, given the observation of B.

As already noted, expectation formulae (3) have the con-
cept of independence of the expected utility on some of the
decisions already embedded in their index. In some contexts,
like we will see later in Sect. 5, it’s useful to be able to ex-
press the independence of the expected utility on some facts
(propositional letters) as well. As in the case of conditional-
independence of likelihood, we choose to talk about utility
independence directly by introducing utility independence
formulae in the logical language:

UI (X|Y) (5)

where X, Y are disjoint sets of propositional letters. It says
that the (expected) utility is independent of (the “truth con-
dition” of) the set of “facts” X, knowing a set of “facts” Y.

In the gardening example, we can say that the expected
utility is independent of the condition of the garden after the
first treatment, if we know what the disease was, since it is
the disease, not the observation, that determines the outcome
of the possible continuations of the treatment. We represent
this with the formula UI (B|F ).

We conclude this section with the following definition.

Definition 5 Let the decision signature Ω = (P,A,O) be
given. The language consisting of all of the propositional
formulae, linear likelihood formulae type (1), conditional-
independence formulae type (2), expectation formulae type
(3), optimal expectation formulae type (4), utility indepen-
dence formulae (5) over the decision signature Ω, as well as
any Boolean combination of the above, will be denoted by
L(Ω).

4 Semantics
In the following, we give a model semantics for our logic. It
is built around a notion of frames which capture the mathe-
matical aspects of a decision situation independently of the
logical language used to talk about it. These frames are then
extended to structures by adding an interpretation function
for the propositional letters.

Our semantics is based on the probabilistic structures of
[Halpern, 2003], with two modifications: a) the probability
measure on the set of worlds (i.e. the possible outcomes) de-
pends on the sequence of options chosen, and b) each world
is assigned a utility.

Definition 6 Let the sequence of n option sets A be given,
and let ∆ be the set of all full option sequences. A proba-
bilistic decision frame (for reasoning about n decisions) is a
triple

(W, (µδ)δ∈∆, u)

where W is a set of worlds, µδ , for every δ ∈ ∆, is a proba-
bility measure on 2W , and u : W → R is a utility function.

To interpret linear likelihood formulae (1), conditional
independence formulae (2), expectation formulae (3), and
utility-independence formulae (5), we add an interpretation
function to these frames. A further restriction will be needed

for the interpretation of optimal expectation formulae (4),
see Def.(13).

Definition 7 A probabilistic decision structure is a tuple

M = (W, (µδ)δ∈∆, u, π)

where (W, (µδ)δ∈∆, u) is a probabilistic decision frame,
and π is an interpretation function which assigns to each
element w ∈W a truth-value function πw : P→ {0, 1}.

The interpretation of the linear likelihood formulae (1) is
defined in the following way:

πw(b1`σ1
(ϕ1) + · · ·+ bk`σk(ϕk) = b) = 1 iff

b1µδ1(ϕM1 ) + · · · + bkµδk(ϕMk ) = b for every
choice of full option sequence δj , j = 1, . . . , k,
satisfying the conditions:

• σj is a subsequence of δj ;
• if σj are S-option sequences, for a subse-

quence S of A, then all δj agree on the op-
tions belonging to sets not in S.

In other words, the linear relationship between the likeli-
hoods has to hold independently of the choices made for any
decisions not mentioned in the formula, and which therefore
are not contained in S.

Also note that the interpretation of likelihood formulae
does not depend on the worldw, since statements about like-
lihood always refer to the entire set of worlds rather than
any particular one. Nevertheless, to keep the interpretation
general, we will always define the validity of a formula in
a certain structure as dependent on a certain world in that
structure.

For the semantics of the conditional-independence formu-
lae (2) we extend the definition of the standard probabilis-
tic notion of (conditional) independence of events to define
(conditional) independence of sets of events:

Definition 8 Given a probability space (W, 2W , µ), we say
that eventsA andB are independent conditional on an event
C, Iµ(A,B|C), iff

µ(B ∩ C) 6= 0 implies µ(A|C) = µ(A|B ∩ C)

or, equivalently,

µ(A ∩ C) 6= 0 implies µ(B|C) = µ(B|A ∩ C).

The sets of events Ai, i = 1, 2 are conditionally independent
given the set of events A3, Iµ(A1,A2|A3), iff

Iµ(B1, B2|B3) for all intersections Bi =⋂
A∈Ai

A(C) of possibly complemented events
from Ai, i = 1, 2, 3.

The interpretation of CI-formulae is then defined by:

πw(Iσ(X1,X2|X3)) = 1 iff

Iµδ(X
M
1 ,XM

2 |XM
3 ), where XM

i := {XM | X ∈
Xi}, for every full option sequence δ extending σ.



Before we can give the interpretation of the expectation and
optimal expectation formulae, we have to define some se-
mantic concepts within the probabilistic decision frames.
We start by recalling the definition of (conditional) expec-
tation from probability theory:

Definition 9 Let (W,F, µ) be a probability space, and X :
W → R be a random variable. The expected value ofX (the
expectation of X) with respect to the probability measure µ,
Eµ(X), is defined as:

Eµ(X) =
∑
w∈W

µ(w)X(w). (6)

For B ∈ F , such that µ(B) 6= 0, the conditional expec-
tation of X with respect to µ conditional on B is given by
Eµ(X|B) = Eµ|B(X).

This notion is sufficient to interpret the expectation for-
mulae (3):

πw(eσ(ϕ) = c) = 1 iff

µδ(ϕ
M ) = 0 or Eµδ(u|ϕM ) = c, for every δ that

extends σ;

And the utility independence formulae (5):

πw(UI (X|Y)) = 1 iff µδ(ϕM ∩ ψM ) 6= 0 or
Eµδ(u|ψM ) = Eµδ(u|ϕM ∩ ψM ), for every X-
atom ϕ, Y-atom ψ, and for every δ ∈ ∆.

To be able to interpret the optimal expectation formulae
ēa1...ak(ϕ) = c, where only some initial number of op-
tions is fixed, we need to incorporate the idea that the de-
cision maker will pick the best (i.e. expected utility maxi-
mizing) option for the remaining decisions. This is captured
by the notion of optimal expected value which is defined be-
low. The definition relies on a notion of successively refined
observations, such that 1. the conditional expectations may
only be conditional on observed events, and 2. the proba-
bility of an observation is not influenced by decisions taken
after the observation. We give the formal definitions in what
follows:

Definition 10 Given a set of worlds W , an event matrix of
length n forW is a sequence B = (B1, . . . , Bn) where each
Bi ⊆ 2W is a partition of W , and Bi+1 is a refinement of
Bi for i = 1, . . . , n− 1.

The successive refinement captures the idea of an increas-
ing amount of observed information on a semantic level. To
capture the fact that observations are not influenced by fu-
ture decisions, we require B to be regular with respect to the
frame F :

Definition 11 Given a frame F = (W, (µδ)δ∈∆, u), we call
an event matrix B = (B1, . . . , Bn) for W regular w.r.t. F if

µa1...ak−1ak...an(B) = µa1...ak−1a′k...a
′
n
(B), (7)

for every k = 1, . . . , n, every B ∈ Bk, and for every ai ∈
Ai, i = 1, ..., n, and a′i ∈ Ai, i = k, . . . , n.

If (7) holds, we can define new probability measures on
Bk, for k = 1, . . . , n, as restrictions:

µa1...ak−1
(B) := µa1...ak−1ak...an(B), (8)

for every B ∈ Bk.

Definition 12 Let F = (W, (µδ)δ∈∆, u), be a probabilistic
decision frame and B = (B1, . . . , Bn) an event matrix for
W that is regular w.r.t. F .

Now, the optimal expected value of the option sequence
a1 . . . ak under an event B ∈ Bk, with respect to F and B,
is defined in the following recursive way:

For k = n:

ĒF,Ba1...an(B) := Eµa1...an (u|B) (9)

For k = n− 1, . . . , 0:

ĒF,Ba1...ak
(B) :=

∑
B′∈Bk+1

B′⊆B

µa1...ak(B′|B)·max
a∈Ak+1

{ĒF,Ba1...aka
(B′)}

(10)
where µa1...ak , for every k = 0, . . . , n−1 are the probability
measures defined in (8) above.

To complete this definition, we define the optimal expected
value in the following special cases:

• If µa1...ak(B) = 0 then ĒF,Ba1...ak
(B) is not defined and

it doesn’t count in (10);

• If Bk+1 = Bk then we have: ĒF,Ba1...ak
(B) =

maxa∈Ak+1
{ĒF,Ba1...aka

(B)}.

We now have the tools we need to give the interpretation
of the optimal expectation formulae.

Lemma 1 For any decision signature (P,A,O) and any
probabilistic decision structure M , the sequence of sets
OM (A) = (OM1 , . . . , OMn ), where OMk := {ψM |
ψ is an Ok-atom}, is an event matrix.

The proof of Lemma 1 follows immediately from the nest-
ing O1 ⊆ · · · ⊆ On of observable propositional letters.

Definition 13 Let a decision signature (P,A,O) be
given. Then a probabilistic decision structure M =
(W, (µδ)δ∈∆, u, π) is called regular if OM (A) is a regular
event matrix for W .

We interpret the optimal expectation formulae (4) in a reg-
ular structure M = (F, π), F = (W, (µδ)δ∈∆, u), in the
following way:5

5The case with zero probability is similar to the correspond-
ing case of conditional likelihood formulae. Namely, in the latter
case we also have `(ψ|ϕ) ≥ c vacuously true for any c, when
µ(ϕM ) = 0, i.e. when `(ϕ) = 0 is true. Whilst in that case it
can be interpreted as “when conditioning on impossible, anything
is possible,” in the case of expectation formulae, it can be read as
“if we know something that is not possible, then we can expect
anything.” Note also that BNs and IDs exhibit the same behavior
when probabilities conditional to impossible events are given.



πw(ēa1...ak(ϕ) = c) = 1 iff

µa1...ak(ϕM ) = 0 or ĒF,O
M(A)

a1...ak (ϕM ) = c.

This completes the model semantics for our logic. To
summarize, we have defined a notion of (regular probabilis-
tic decision) structures, and shown how the truth value of
any type of formula of our logic can be determined at any
world of any such structure. The interpretation of the pure
propositional formulae as well as of Boolean combinations
of formulae is defined in the usual way.

Definition 14 A formula f is a logical consequence of or
entailed by a set of formulae Φ, Φ |= f , if for every structure
M = (W, (µδ)δ∈∆, u, π), and every w ∈W , we have:

(M,w) |= Φ implies (M,w) |= f .

To see why this notion is sufficient for decision making,
let’s assume that Φ contains all the formulae that repre-
sent the given facts about the organic garden problem. And
that treatment t1 has already been chosen, and the observa-
tion B (“better”) has been made before deciding between
c1 and c2. If we determine that Φ |= ēt1c1(B) = 11 and
Φ |= ēt1c2(B) = 8.5, (we show how to infer these facts
syntactically in the following sections) then we know that
the expected utility of taking c1 is larger than that of c2, and
therefore c1 is the optimal decision option in this case.

5 Influence Diagrams
Influence diagrams [Howard and Matheson, 1981] are the
most prominent formalism for representing and reasoning
about fixed sequences of decisions. IDs consist of a qual-
itative graph part, which is complemented by a set of ta-
bles giving quantitative information about utilities and con-
ditional probabilities. We will show that our formalism sub-
sumes influence diagrams in the sense that it allows to rep-
resent problems given as IDs as sets of formulae, using a
similar amount of space as required by the ID. In Sect. 6,
we will give a calculus for our logic that allows to derive
the same statements about expected utilities as would be de-
rived by reasoning on the ID. Conversely, our logic allows
expressing and reasoning about some kinds of facts that are
not supported by influence diagrams: inequalities on proba-
bilities and utilities, and (utility) independence restricted to
certain option sequences.

The graph part of an ID is a directed acyclic graph in
which three different kinds of nodes can occur. The chance
nodes (drawn as ovals) represent random variables and are
associated with the given conditional probability distribu-
tions. Decision nodes (drawn as rectangles) represent the
decisions to be taken. Value nodes (drawn as diamonds) are
associated with real-valued utility functions. Arcs between
decision nodes determine the order in which decisions are
taken, and arcs from chance nodes to decision nodes repre-
sent that the value of the chance node is known (observed)
when the decision is taken. Arcs into chance and value nodes
represent (probabilistic) dependency.

B F

T C U

F

0.4

T = t1 B

F 0.9
¬F 0.2

T = t2 B

F 0.2
¬F 0.9

U
t1 t2

c1 c2 c1 c2

F 16 9 −2 7

¬F −4 7 18 9

Figure 1: The influence diagram of the gardening example.

Example 2 Let us consider an influence diagram on Fig-
ure 1, which is a graphical representation of the situation
described in example 1. We have two decision nodes to rep-
resent the two decisions, T – the choice of a treatment, and
then C – the choice for the continuation of the treatment.
And two chance nodes, F – for the disease and B – for the
condition of the plants after the first week of treatment. The
corresponding probability and utility values are given in the
tables next to the nodes.

An influence diagram is said to be regular [Shachter,
1986] if there is a path from each decision node to the next
one. It is no-forgetting if each decision has an arc from any
chance node that has an arc to a previous decision. If all the
chance nodes of an influence diagram represent binary vari-
ables, then we call it a binary influence diagram. We can
identify a binary chance node X with a propositional letter
and denote its two states by X and ¬X . We consider here
only binary, regular and no-forgetting influence diagrams
with only one value node.6

We denote the set of parent nodes of a node X by
Pa(X) and the set of non-descendants with ND(X). We use
NP(X) to denote the set of all nodes that are not parents of
X . If we want to single out parents or non-descendants of a
certain type, we use a corresponding subscript, for example
with Pa◦(X) we denote the set of all parent nodes of a node
X that are chance nodes, and the set of all parent nodes of
X that are decision nodes we denote by Pa2(X).

We can use the formulae of the logical language defined
in Sect. 3 to encode influence diagrams.

6The restriction to binary nodes is not essential: it is possible
to encode nodes with more states by using several propositional
letters per node. It would also be straightforward to extend our logic
to represent several utility nodes. It may also be possible to extend
our framework to allow dropping the regularity and no-forgetting
conditions, but we have not investigated this yet.



Example 3 The decision problem given by the ID in Exam-
ple 2 can be represented by the following formulae over the
sequence of option sets A = ({t1, t2}, {c1, c2}), with cor-
responding sets of observables O = (∅, {B}):

`λ(F ) = 0.4, `t1(B|F ) = 0.9, `t1(B|¬F ) = 0.2,

`t2(B|F ) = 0.2, `t2(B|¬F ) = 0.9,

where λ is the empty option sequence, and

et1c1(F ) = 16, et1c1(¬F ) = −4,

et1c2(F ) = 9, et1c2(¬F ) = 7,

et2c1(F ) = −2, et2c1(¬F ) = 18,

et2c2(F ) = 7, et2c2(¬F ) = 9

UI (B|F ) /

In general, we encode an influence diagram with a set of
formulae that we call its specific axioms:

Definition 15 Let an influence diagram I with n decision
nodes be given. Let AI be the sequence of option sets deter-
mined by the decision nodes of I , i.e. AI = (A1, . . . , An),
and OI = (O1, . . . , On) with Oi = Pa◦(Ai), for every
i = 1, . . . , n. We define the set of specific axioms of I ,
Ax(I), to be the set consisting of the following formulae:

• `σ(X|ϕ) = c, for every chance node X , every
Pa◦(X)-atom ϕ, and every Pa2(X)-option sequence
σ, where c = p(X|ϕ, σ);

• Iλ(X,ND◦(X)|Pa◦(X)), for every chance node X;
• eσ(ϕ) = b, for every (Ai1 , . . . , Aik)-option sequence
σ, k ≤ n,where {Ai1 , . . . , Aik} = Pa2(U), and every
Pa◦(U)-atom ϕ, where b = U(ϕ, σ);

• UI (NP◦(U)|Pa◦(U)).

Note that in the encoding in Example 3, we omit the con-
ditional independence formulae Iλ(B, ∅|F ) and Iλ(F, ∅|∅).
They are easily seen to be tautologies, so omitting them
makes no difference semantically.

6 Axioms and Inference Rules
While Sect. 4 defines entailment in terms of the model se-
mantics, it does not say how entailment may be checked al-
gorithmically.

In this section, we present an inference system that con-
tains separate axioms and inference rules for the different
types of reasoning that we want to capture in our logic. This
inference system is not complete with respect to the model
semantics for the whole logic, but it is sufficient for the en-
tailment of statements of the kind needed for decision mak-
ing, at least to the same extent as that supported by influence
diagrams.

For the propositional reasoning, and reasoning about
likelihood, inequalities, and independence, we have the
following axiomatic schemes and rules adapted from the
ones given by [Fagin, Halpern, and Megiddo, 1990] and
[Ivanovska and Giese, 2011]:
Prop All the substitution instances of tautologies in propo-

sitional logic,

QU1 `σ(ϕ) ≥ 0

QU2 `σ(>) = 1

QU3 `σ(ϕ) = `σ(ϕ∧ψ)+`σ(ϕ∧¬ψ), for every pure prop.
formulae ϕ and ψ.

Ineq All substitution instances of valid linear inequality
formulae,

MP From f and f ⇒ g infer g for any formulae f , g.

QUGen From ϕ ⇔ ψ infer `σ(ϕ) = `σ(ψ), for every pure
prop. formulae ϕ and ψ.

SYM From Iσ(X1,X2|X3) infer Iσ(X2,X1|X3).

DEC From Iσ(X1,X2 ∪X3|X4) infer Iσ(X1,X2|X4).

IND From Iσ(X1,X2|X3) and `σ(ϕ1|ϕ3) ≤ (≥)a infer
`σ(ϕ1|ϕ2 ∧ ϕ3) ≤ (≥)a, where ϕi is an arbitrary Xi-
atom, for i ∈ {1, 2, 3}.

The rule Prop captures the propositional reasoning and can
be replaced by any complete set of axioms for proposi-
tional logic stated for the formulae of our logical language.
Q1–Q3 are based on the defining properties of probabil-
ity measures. One complete axiomatization of the reasoning
about inequalities is given in [Fagin, Halpern, and Megiddo,
1990]; a substitution instances of those axioms with formu-
lae of this logic can replace Ineq. QUGen reflects the prop-
erty that equivalent statements have equal likelihoods. Con-
ditional independence reasoning rules for symmetry and de-
composition are based on basic properties of conditional in-
dependence of sets of random variables, whilst the IND rule
is based on the definition of conditional independence. As
we show in [Ivanovska and Giese, 2011], the above rules are
necessary and sufficient for conveying complete reasoning
about statements as ones inferred by Bayesian networks.

Here we add the following new rules for reasoning about
preservation of likelihood and independence, and about (op-
timal) expected utilities.
PP From `σ(ϕ|ψ) = b infer `σ′(ϕ|ψ) = b, for every option

sequence σ′ containing σ.7

PI From Iσ(X1,X2|X3) infer Iσ′(X1,X2|X3), for every
option sequence σ′ containing σ.

E1 From eσ(ϕ) = b infer eσ′(ϕ) = b, for every σ′ extend-
ing σ.

The last three rules capture the idea that once the probability
or independence statement is determined to hold for some
choice of decision options, it holds independently of any de-
cisions that are not mentioned in it.
GRE From ea1...ak(ϕ) = c infer ēa1...ak(ϕ) = c, for ai ∈

Ai, and ϕ an O(Ak)-atom.

EE eδ(ϕ) = b iff ēδ(ϕ) = b, for δ ∈ ∆ and ϕ an O(An)-
atom.

GRE and EE give the connection between the two types of
expectation formulae.

7This rule can be extended to arbitrary linear likelihood formu-
lae, if care is taken to extend all occurring option sequences by the
same additional options.



EXP1 From eσ(ϕi) = bi, ψ = ϕ1∨. . .∨ϕm, ϕi∧ϕj ↔ ⊥,
for i, j = 1 . . .m, and b1`σ(ϕ1) + · · · + bm`σ(ϕm) −
b`σ(ψ) = 0, infer eσ(ψ) = b.

EXP2 Let ψ be an Ok-atom and {ϕ1, . . . , ϕm} be the set
of all Ok+1-atoms, such that ψ is a sub-atom of ϕi,
i = 1, . . . ,m. From ēa1...aka(ϕi) = bi,a, for every
a ∈ Ak+1, and bi = maxa{bi,a}, for every i =
1, . . . ,m, and b1`a1...ak(ϕ1) + · · ·+ bm`a1...ak(ϕm)−
b`a1...ak(ψ) = 0, infer ēa1...ak(ψ) = b.

The first expectation rule is based on the definition of math-
ematical expectation, and the second is the one we use to
propagate knowledge about optimal expected utility from
further to a closer decision point.

We also introduce the following utility-independence
rules:
UI1 From UI (X|Y) and eσ(ψ) = b, infer eσ(ϕ ∧ ψ) = b,

where X and Y are (mutually disjoint) sets of propo-
sitional letters, ϕ and ψ are arbitrary X and Y-atoms
correspondingly, and σ is an arbitrary option sequence.

UI2 From UI (X1|Y) infer UI (X2|Y), where X2 ⊂ X1.

The soundness of the given axioms and rules mostly fol-
lows easily from the semantics of the formulae.

Example 4 We can use this calculus to derive some conclu-
sions about the situation described in Example 1, and ax-
iomatized in Example 3. If we want to determine the optimal
expected utility of taking the option t1, ēt1(>), we can use
the following derivation:

1. et1c1(F ) = 16, et1c1(¬F ) = −4 . . . . . . . . . . . . . . (premises)
2. UI (B|F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (premise)
3. et1c1(B ∧ F ) = 16, et1c1(B ∧ ¬F ) = −4 . . (1,2, and UI1)
4. `t1(F ) = 0.4, `t1(B|F ) = 0.9, `t1(B|¬F ) = 0.2(premises

and PP)
5. `t1(¬F ) = 0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4, and QU3)
6. `t1(B ∧ F ) = 0.36, `t1(B ∧ ¬F ) = 0.12 . . . . . . (4,5, def of

cond. likelihood, Ineq)
7. `t1(B) = 0.48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6, QU3)
8. `t1(¬B) = 0.52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7, QU3)
9. `t1c1(B ∧ F ) = 0.36, `t1c1(B ∧ ¬F ) = 0.12, `t1c1(B) =

0.48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6, 7, and PP)
10. 16`t1c1(B ∧ F ) + 7`t1c1(B ∧ ¬F )− ((16 · 0.36 + (−4) ·

0.12)/0.48)`t1c1(B) = 0 . . . . . . . . . . . . . . . . . . . (9, and Ineq)
11. et1c1(B) = 11 . . . . . . . . . . . . . . . . . . . . . (10, Prop, and EXP1)
12. et1c2(B) = 8.5, et1c1(¬B) = −2.46154, et1c2(¬B) =
−5.76923 . . . . . . . . . . . . . . . . . . (obtained similarly to step 11)

13. ēt1c1(B) = 11, ēt1c2(B) = 8.5, ēt1c1(¬B) = −2.46154,
ēt1c2(¬B) = −5.76923 . . . . . . . . . . . . . . . . . . . (12, and GRE)

14. `t1(>) = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (QU2, PP)
15. 11`t1(B)+(−2.46154)`t1(¬B)−(11 ·0.48+(−2.46154) ·

0.52)`t1(>) = 0 . . . . . . . . . . . . . . . . . . . . . (8,9,13,14 and Ineq)
16. ēt1(>) = 3.99999 . . . . . . . . (15,Prop, and EXP2) /

The given calculus is not complete in general, which
is in part due to the incompleteness of its likelihood and
conditional independence part. That issue is discussed in
our paper about the combination of likelihoods and condi-
tional independence [Ivanovska and Giese, 2011] and uses

the fact shown by Studeny, [Studený, 1992], that a “stan-
dard” axiomatization of conditional independence cannot be
complete. As observed by [Fagin, Halpern, and Megiddo,
1990], the reasoning about independence requires reasoning
about polynomial and not just linear inequalities. The terms
bi`a1...ak(ϕi) in the EXP2 rule indicate that polynomial in-
equality reasoning is also required in general to reason about
conditional expectation, when no concrete values for the bi
can be derived. Hence we could possibly achieve complete
reasoning in our logic by incorporating polynomial instead
of only linear inference, but that would make the complex-
ity increase: [Fagin, Halpern, and Megiddo, 1990] show that
reasoning about (quantifier-free) polynomial likelihood for-
mulae is possible in PSPACE, by application of the theory
of real closed fields, and we know of no better bound. On
the other hand, reasoning in our calculus lies within NP, as
explained below.

We can however prove the following restricted complete-
ness theorem for entailments corresponding to those possi-
ble with an ID.

Theorem 1 Let I be a given influence diagram with n de-
cision nodes and Ax(I) its set of specific axioms. Then for
every k ∈ {1, . . . , n}, every (A1, . . . , Ak)-option sequence
a1 . . . ak, and every Ok-atom ψ, there is a real number b
such that

Ax (I) ` ēa1...ak(ψ) = b .

Proof: We use a backward induction on the length of the
option sequence k.

For k = n, let a1 . . . an be a fixed (A1, . . . , An)-option
sequence and ψ be an On-atom. Let ϕ1, . . . , ϕm be all
of the Pa◦(U)-atoms. Then Ax(I) contains the formulae
ea1...an(ϕi) = bi, for some real numbers bi, i = 1, . . . ,m.
Let ψi, i = 1, . . . , s be all On ∪ Pa◦(U)-atoms that contain
ψ as a subatom. And we have the following derivation steps:

1. ea1...an(ϕi) = bi . . . . . . . . (premise)(for i = 1, . . . ,m)

2. UI (NP◦(U)|Pa◦(U)) . . . . . . . . . . . . . . . . . . . . (premise)

3. UI (On|Pa◦(U)) . . . . . . . . . . . . . . . . . . . . . . (2, and UI2)

4. ea1...an(ψi) = bi . . . . . (1, 3, and UI1)(for i = 1, . . . , s)

5. `a1...an(ψi) = ci . . . . . . (Q1–Q3, PP)(for i = 1, . . . , s)

6. `a1...an(ψ) = c . . . . . . . . . . . . . . . . . . . . . . . (Q1–Q3, PP)

Depending on c we then have the following two groups of
possible final steps of this derivation:

For c 6= 0:

7. b1`a1...an(ψ1) + · · ·+ bm`a1...an(ψs)− (b1c1 + · · ·+
bscs)/c`a1...an(ψ) = 0 . . . . . . . . . . . . (4, 5, 6, and Ineq)

8. ea1...an(ψ) = (b1c1 + · · ·+ bscs)/c . . . . (7 and EXP1)

9. ēa1...an(ψ) = (b1c1 + · · ·+ bscs)/c . . . . . (8 and GRE)

For c = 0:

7′. ci = 0 . . . . . . . . . . . . . . . . (3, 4, QU3)(for i = 1, . . . ,m)

8′. b1`a1...an(ϕ1)+· · ·+bs`a1...an(ϕs)−b`a1...an(ψ) = 0
(4, 7′ and Ineq)

9′. ea1...an(ψ) = b . . . . . . . . . . . . . . . . . . . . . . (8′ and EXP1)



10′. ēa1...an(ψ) = b . . . . . . . . . . . . . . . . . . . . . . . (9′ and GRE)

where b is any real number.
For k < n, let us suppose that the assumption holds for

every k+ 1, . . . , n. Let a1, . . . , ak be an arbitrary option se-
quence such that ai ∈ Ai, i = 1, . . . , k and ψ be an arbitrary
Ok-atom. Let {ϕ1, . . . , ϕm} be the set of all Ok+1-atoms
such that ψ is a subatom of ϕi, i = 1, . . . ,m. Then we have
the following derivation steps:

1. ēa1...aka(ϕi) = bi,a (IS) (for i = 1, . . . ,m, a ∈ Ak+1)

2. bi = maxa{bi,a} . . . . . . . . . . . (Ineq)(for i = 1, . . . ,m)

And then we proceed with steps similar to those in the
case k = n, using (EXP2) instead of (EXP1). Q.E.D.

From soundness, and an inspection of the axiomatization
Ax(I), we can conclude that the value b must clearly be the
same as what would be derived from the ID.

[Fagin, Halpern, and Megiddo, 1990] show that reason-
ing in probabilistic propositional logic lies within NP. The
effort of propagating optimal expected values is comparable
to that in influence diagrams. Since precise calculations for
influence diagrams are known to be NP-hard, we conclude
that our calculus is worst-case optimal for these problems.

7 Decisions under incomplete information
Our logic can easily be extended to allow inequalities for
(optimal) expected utility formulas. Unfortunately, the ob-
vious modification of the model semantics does not corre-
spond to the notion of decision making under incomplete
information about the decision situation: inequalities in the
problem specification lead to the selection of a class of struc-
tures, and the logical consequences are those that hold in all
of them. But within each structure, the utilities and likeli-
hoods are precise values, and Def. 12 will reflect optimal de-
cisions for each structure individually. To describe decisions
under incomplete information, the information available is
important for the decision strategy.

E.g., given 1 ≤ ēt1 ≤ 2 and 0 ≤ ēt2 ≤ 3, one deci-
sion maker might choose t1 to minimise the worst-case risk,
giving 1 ≤ ē ≤ 2, another t2 to maximize the best-case
gain, giving 0 ≤ ē ≤ 3. But choosing the optimal strat-
egy individually for each structure, based on precise values
for the optimal expected values, leads to the unsound result
1 ≤ ē ≤ 3.

It turns out that

• the consequence relation defined in this paper is in gen-
eral not suited for reasoning about decisions under in-
complete information.

• reasoning about decisions under incomplete informa-
tion is non-monotonic: additional knowledge about ex-
pected utilities, etc., can change which decision is pre-
ferred by a decision maker, and make previous conclu-
sions unsound.

• this issue can be treated by using as models, instead
of the structures described here, sets of such structures.
These sets correspond to the decision maker’s beliefs
about the decision situation, and a suitable semantics

can be built in the style of a “logic of only knowing,”
see e.g. [Chen, 1993].

We will discuss this approach properly in a future publi-
cation.

8 Related Work
In our logic, all likelihoods are conceptually indexed by
full option sequences, although the formalism allows writ-
ing only a subset of the options in formulae. It is tempting
to try to reduce the conceptual complexity of the formal-
ism by using propositions to represent the decisions. This
has been suggested already by [Jeffrey, 1965], and is taken
up e.g. by [Bacchus and Grove, 1996]. However, it requires
keeping track of “controlled” versus “non-controlled” vari-
ables, and some mechanism is needed to express preference
of one option over another. It also gives no immediate solu-
tion for the description of observations, and there is an issue
with frame axioms. Ultimately, keeping decisions separate
from propositions seems to lead to a simpler framework.

Another related line of work in this direction is based on
Markov decision processes (MDPs). A MDP is a complete
specification of a stochastic process influenced by actions
and with a “reward function” that accumulates over time.
In contrast to our formalism, MDPs can accommodate un-
bounded sequences of decisions. [Kwiatkowska, 2003] has
investigated model checking of formulae in a probabilistic
branching time logic over MDPs. Our approach is not as
general, but significantly simpler. We also describe the de-
cision problem itself by a set of formulae and reason about
entailment instead of model checking.

Another approach that embeds actions into the logical for-
malism is the situation calculus, a probabilistic version of
which has been described by [Mateus et al., 2001]. This is a
very general approach, but the situation calculus is based on
second-order logic. Our approach is based on propositional
logic, and is therefore conceptually simpler, although it is
less general.

We should also point out that our formalism allows more
compact representation than most other logic-based ap-
proaches, since, similar to IDs, it gives the possibility of ex-
pressing independence on both uncertainties and decisions.

9 Conclusion and Future Work
We have argued that a logic-based approach can have ad-
vantages over the more common graphical approaches, in
particular in combination with reasoning about time, knowl-
edge, continuous values, etc.

As a possible basis for such a logic-based approach, we
have described a propositional logic designed to specify a
fixed, finite sequence of decisions, to be taken with the aim
of maximizing expected utility. Our approach is to let each
complete sequence of actions impose a separate probability
measure on a common set of worlds equipped with a util-
ity function. The formulae of the logic may refer to only
a subset of the decisions, which allows for a more com-
pact representation in the presence of independencies. We
have shown how influence diagrams can be mapped into our
logic, and we have given a calculus which is complete for



the type of inferences possible with IDs. A step beyond IDs
would be to allow (optimal) expectation formulae with in-
equalities, which provides a representation equivalent to a
“credal influence diagram” (an analog of a credal network).
As discussed in Sect. 7, we are in the process of developing
an appropriate extension of our work in the spirit of a logic
of only knowing.

The main contribution here is the definition of a suit-
able syntax, model semantics and calculus. By “suitable” we
mean the defined formulae, rules, and semantics are neces-
sary and sufficient to accommodate decision problems we
are concerned with (and encode influence diagrams), while
still representing general statements about probability, util-
ity, and independence, and reflecting the main aspects of the
corresponding types of reasoning.

We consider the main appeal of our logic over other logic-
based approaches to be its relative simplicity: it incorporates
reasoning about multiple decisions, observations, and inde-
pendence, with a fairly straightforward model semantics, no
need for frame axioms, and a rather small inference system.

The presented logic is intended as a basis for treating
more general problems, rather than treating the known ones
more efficiently. For that to be achieved, it’s necessary to
find a way to utilize the linear likelihood inequalities in the
decision making inference, and also to include expectation
inequality formulae in the logic. In future work, we will also
consider the effect of including polynomial and not only lin-
ear inequality reasoning. (As we have previously stated, in-
cluding polynomial reasoning into our logic would improve
completeness but at a high price.) This should make it pos-
sible to design a calculus that is complete for arbitrary en-
tailment between formulae as given in this paper, and also
extensions allowing e.g. comparisons between different ex-
pected utility terms. This will put reasoning in the style of
“qualitative influence diagrams”[Renooij and van der Gaag,
1998] within the range of our framework.
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