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Abstract 
We report work carried out within the CODIO project on COllaborative Decision support for Integrated Operations. As one 
part of this project, we have designed a system to provide assistance in operational decisions based on real-time sensor 
readings in a typical scenario: while drilling close to the transition to a high-pressure formation, a gas influx is observed. The 
drilling team needs to decide whether to circulate, increase the mud weight, plug back, set a casing, etc.  

After a brief description of the technology we used to model decision problems (Bayesian Networks, Influence Diagrams), 
we describe our case study and go on to apply the method of decision analysis to it. We discuss how the resulting influence 
diagram was tested using a simulation, and discuss challenges in applying the technology, as well as lessons learnt underway. 
We also give a list of desiderata to establish better decision making practices in the petroleum industry. 
 
Introduction 
One of the (sometimes tacit) assumptions behind Integrated Operations (IO) is that all the information provided by the 
technology will help to make better decisions faster. But for this to happen, information has to be presented in an accessible, 
useful, and decision relevant format. The work reported here was carried out within the CODIO project on COllaborative 
Decision support for Integrated Operations. CODIO proposes to use the tools of decision analysis to provide decision makers 
with logical and consistent recommendations based on the available data. 

In this paper, we show how we have applied the method of decision analysis to a real case, representative of a typical 
scenario in drilling operations, and how we have evaluated the model. As we will show, decision analysis provides a tool to 
arrive at good decisions in a consistent way.  An effort is required to do this however, and we will point out both challenges in 
the modeling process and problems based in the way decision making is treated in the industry today. 
 
Modeling and Solving Decision Problems with Influence Diagrams 
Decision trees are widely used in the oil & gas industry. A decision tree provides a graphical illustration of all the 
uncertainties, decisions, and payoffs associated with a decision situation. Although the application of decision trees is very 
intuitive for simple decision problems, the method loses its appeal for more complex decisions. A symmetric decision tree 
grows exponentially with the number of variables in the decision domain, and this often makes their use impractical. For those 
more complex decisions, the influence diagram (ID) can provide a level of insight and transparency which cannot be achieved 
with the equivalent decision tree.  

The use of graphical structures for representing joint probability distributions, usually credited to Wright (1921, 1934) and 
Good (1961a, b), was first fully described by Howard and Matheson (1981). It came to computer science and statistics through 
the work of Kim and Pearl (1983), Lauritzen and Spiegelthaler (1988), and Pearl (1988). There have since been many 
significant developments in model building and analysis using graphical structures.  

The influence diagram1 is a compact graphical model representation for reasoning under uncertainty and was developed to 
aid in the structuring and analysis of complex decision situations. The ID offers two key benefits to a decision situation – 
structuring and probabilistic evaluation. The structuring part provides a graphical representation of the interrelationships 
among the decision basis elements (alternatives, information, and preferences), whilst the evaluation part evaluates the 
resulting decision structure and provides an assessment of the expected utility given the quantified decision basis. 
 
Influence Diagram Components 
                                                           
1 Graphical structures without decisions and payoffs are often called Bayesian Networks or Belief Networks whilst Influence Diagrams, 
Decision Networks, and Bayesian Decision Networks refer to graphical structures which include decisions and payoffs. 
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The representational framework of an influence diagram captures the probabilistic relationships among decisions 
(alternatives), key uncertainties (information), and utilities (values or preferences). The influence diagram model comprises 
four types of nodes: decision, chance, deterministic, and value. Decision nodes, depicted as rectangles, specify a set of 
alternatives. Chance nodes, depicted as ovals, represent the key uncertainties in the decision domain. Deterministic nodes, 
shown as double-bordered ovals, represent either constants or intermediate calculations. Value nodes, shown as diamonds, 
represent the criteria used to make the decisions. The arrows in an influence diagram represent conditional probabilistic 
relationships between the variables they connect. Their interpretations depend on the types of nodes they connect (Howard 
1990). 
 
Decision Analysis Cycle 
In this section we illustrate how decision analysis and influence diagrams can be used effectively to follow a systematic 
approach to analyze oil & gas decisions. 

To deal with complex real-world problems, decision analysis uses a cyclical approach (Figure 1). The starting point is a 
real decision situation which is too opaque to be evaluated intuitively. The purpose of the process is to provide a set of steps 
that transforms the complex and opaque decision situation into a transparent one where we have clarity of insight and clarity of 
action. In the framing phase, we gather data, generate alternatives, and identify values for making the decision. The ID is then 
used to build the structure of the decision situation where the values, alternatives, and information and their relevance are 
clearly identified. This is the first high-level model of the decision. In the deterministic analysis phase, we use the ID to 
perform deterministic sensitivity analysis to identify the crucial uncertainties in the problem. In the probabilistic analysis 
phase, the probability distributions of the crucial uncertainties are encoded. Using the ID, the alternatives are then evaluated. 
Finally, in the sensitivity analysis phase, the results obtained from the ID are examined, the alternatives, values, and 
information are revisited, and the model is reexamined. Based on this sensitivity analysis, we decide whether to act or to return 
to the beginning and start the cycle again. Following this iterative process results in the selection of the best policies and 
provides clear reasoning for a decision. 

 
Figure 1 - Decision Analysis Cycle 
 
Introductory Example 
Consider the following decision situation (Rajaieyamchee and Bratvold 2009): 

 
An operator has a producing well with severe water cuts in the production that necessitate workover operations. He 
must decide either to replace the tubing and perforate (workover) or to drill a sidetrack parallel to the existing well 
path to maximize the oil production and minimize the water production. The cost estimates are known for each of 
them. But, he is uncertain about which producing zone (i.e., zone A or zone B) the water is coming from.  

 
The decision problem can be represented by the influence diagram in Figure 2. It shows the probabilistic interrelationships 

between the deterministic nodes Perforate (A) and Perforate (B), the uncertainties Zone A, Zone B, Qwater, and Qoil, and the 
Sidetrack/Workover decision node. The arrows from Sidetrack/Workover into Perforate (A) and Perforate (B) deterministic 
nodes are functional dependence arrows, meaning that the decision made affects their outcomes. These deterministic nodes in 
turn alter the probability distributions of Qoil and Qwater depending upon which alternative is chosen. While the Qoil and 
Qwater are dependent on Zone A, Zone B, Perforate (A), and Perforate (B), they are independent of Sidetrack/Workover given 
Perforate (A) and Perforate (B). Finally, Net Present Value signified by NPV node deterministically depends on Qoil, and 
Qwater as well as the chosen action in Sidetrack/Workover decision. 

Framing Deterministic 
Analysis

Probabilistic 
Analysis 

Sensitivity 
Analysis

Decision 
Situation Decide 
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Specifically, the arrows between chance nodes represent conditional probabilistic dependence. They are called relevance or 
influence arrows. The absence of a relevance arrow between two chance nodes is a much stronger statement of the expert’s 
knowledge than the presence of an arrow. The former implies conditional independence, whereas the latter represents only 
potential conditional probabilistic dependence; i.e., the associated probability distribution of the child2 node may depend on 
the values of the parent node(s). For instance, consider the Zone A and Zone B nodes in Figure 2. The lack of a relevance 
arrow between them explicitly asserts that they are probabilistically independent. In contrast, the arrow between Zone A and 
Qoil implies that relevance may exist.  

Relevance is a mutual property; i.e., if node Zone A is relevant to node Qoil, then Qoil is also relevant to Zone A, which is 
the result of arrow reversal by applying the Bayes’ theorem. This allows switching the direction of relevance arrows between 
the two chance nodes. To accomplish this, extra arrows from Zone B, Perforate (A), and Perforate (B) into Zone A must be 
added to ensure that Zone A and Qoil are in the same state of information. This manipulation transforms the influence diagram 
in Figure 2 into the alternative influence diagram model shown in Figure 3. Although the influence diagrams are consistent, 
they would differ in suitability for probability assessments. For most geoscientists or petroleum engineers, it would be easier to 
assess the conditional probabilities of Qoil given the knowledge at Zone A than assess the conditional probabilities of Zone A 
given the knowledge of the probabilistic distribution of Qoil. Therefore, the ID in Figure 2 is more useful for our decision 
problem. This illustrates that specifying the direction of arrows should be based on their suitability for probability assessment. 

 

 
 

An ID can always be converted into a decision tree and in order to better appreciate the ID’s compactness and transparency 
we can look at the equivalent decision tree for this problem as shown in Figure 4. In this case the resulting symmetric decision 
                                                           
2 An arrow is said to originate at the parent and to terminate at the child. 
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Figure 2 - An influence diagram for workover decision situation

Figure 3 - Alternative influence diagram for the workover decision problem
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tree has 128 end-points and by expanding the compact representation of the tree shown in Figure 4 into its full tree, we will 
lose its original intention of gaining insight and clarity into the decision problem 

. 
Figure 4 -Corresponding generic decision tree of the workover decision problem influence diagram model 
  

It’s been almost 30 years since IDs were introduced for supporting decision understanding and analysis. Although they 
have not been very popular in the oil & gas industry, they have been extensively used in other decision modeling situations 
including in the medical industry, Ecological and Biological studies, Aerospace, as well as in Marine Maintenance planning 
and risk-analysis, Transportation system, and in Software and Telecommunications. 
 

The Case Study 
In the CODIO project, we have applied a decision analytic approach to operational decisions during a drilling operation. An ID 
model was constructed using the information contained in a typical drilling program about the anticipated geology; like pore 
pressure, fracture pressure, rock hardness at different depths, etc., as well as knowledge about the equipment used; like drill 
bit, gas gauges, etc. This ID, which provides a visual representation of the structure and the context of the drilling operation, is 
then fed with real-time sensor readings concerning estimated depth, mud weight, mud flow, gas readings, and so on, to obtain 
probabilistic knowledge of important unknowns like depth of formation boundaries, actual down-hole pore pressure, etc. 
Using this probabilistic knowledge, one can estimate the utility3 of different operational decisions, like continuing to drill, 
stopping to circulate, changing mud weight, setting a casing shallower than planned in the drilling program, etc. 

Influence Diagrams have historically been applied mainly to decision problems that are concerned with a fixed, finite 
sequence of decisions known before hand, and where it makes sense to talk about a total utility of the outcome after all 
decisions have been made. We applied IDs to a slightly different kind of decision problem, namely one of operational decision 
making during a continuous process. Decisions about aborting a drilling operation, changing a parameter like mud weight, etc., 
can be made at any point in time, and it is not natural to identify a fixed finite number of decision points. However, as will be 
illustrated, the ID is a useful tool also in this setting. 
 
The Scenario 
We tested the decision analytic approach using an influence diagram model on a real case that occurred on the Norwegian 
continental shelf in 2002. The drilling program for this job prescribed drilling to a certain depth, which was not far from an 
anticipated high-pressure formation, before setting a casing. The depth of the transition to this particular high-pressure 
formation is highly uncertain due to vague seismic signals. Common practice is to set the casing at a safe distance from the 
high-pressure formation; several 100ft prior to the expected depth. However, this would have meant an earlier start of the 
open-hole section to be drilled next, and accordingly a lower pressure-tolerance of that open-hole section. Since drilling 
proceeds through a high-pressure zone, a new casing would eventually have to be set, which would again have to be somewhat 
higher than that in the drilling program. Eventually, starting with the usual casing depth, the reservoir could only have been 
reached with one more casing than required by the drilling plan in our case. In other words, setting the casing further down 
provided the possibility of reaching the reservoir depth with one casing less than usual. 

The early part of the drilling operation was executed according to plan, but shortly before reaching the casing depth, a 
small amount of gas appeared and eventually dissipated. The drilling team did not assign much importance to this small gas 
peak, and continued to drill another stand. After that, a considerable gas influx was observed, which could not be contained by 
increasing the mud weight, and which eventually required plugging back and side-tracking, setting back the operation by 
several days. 

                                                           
3 A utility is a numerical rating assigned to every possible outcome a decision maker may be faced with. For a risk-neutral decision maker 
who is using monetary value as the decision metric, the utility is equal to the monetary value. 
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Given the amount of gas observed after drilling the last stand, the drilling team had to follow the standard procedures for 
dealing with such a situation. The most interesting operational decision happened when the first, smaller gas peak appeared, 
and this decision is the focus of our discussion. 

An unexpected gas influx can be due to a high-pressure zone occurring earlier than anticipated, requiring a casing setting. 
It could also be due to a small gas pocket that can easily be contained by increasing the mud weight, a much quicker and 
cheaper option. One could also stop and circulate in the hope that one is just seeing a small amount of connection gas4 that will 
quickly dissipate. The question is how to decide without knowing which is the case, and how to account for the risks at hand; 
e.g., of fracturing if we increase the mud weight too much. Since the gas influx may indicate that the formation boundary is 
significantly higher than the depth indicated in the drilling program, the formation’s fracture pressure might also be different 
from the values in the drilling program. The drilling operation has to deal with a number of uncertain events and it is 
impossible to say for sure what caused the gas influx, so the decision needs to be taken in the face of these uncertainties. This 
requires us to assess the probabilities of each of the causes, along with other relevant but uncertain factors, computing the 
expected utilities for each combination of these and each of the possible actions, and then taking the action that has the 
maximum expected utility (Bratvold and Begg 2010). This is the approach prescribed by decision analysis, and this is what 
IDs allow us to compute. 

We will discuss the decision-analytical approach to this kind of operational problem, and show how IDs can help to 
structure the decision situation, provide insight and recommend a choice. We will not discuss what would have been the best 
course of action in this scenario given knowledge available only in hindsight as this is somewhat “unfair” and invites hindsight 
bias (Bratvold and Begg 2010). Rather, we will discuss how to achieve clarity of thinking and, eventually, how to reach the 
optimal decision during the operation given the information available at that time. 
 
Available Data and Decision to take 
We were able to use all data included in the drilling program, including geological data available about the field before the 
particular drilling operation. We also had access to detailed log data from the operation, which we could use to replay the 
scenario, providing our ID model with the data that would have been available if the ID model had been available during the 
actual operation. 

We can distinguish between two types of information that are relevant for this decision problem. One kind, which we will 
call configuration data5, represents estimates and expectations about the operation before it starts, and is taken from the 
drilling program, cost models, risk assessments, etc. The other kind, which we will call real-time data, is obtained during the 
operation and consists of sensor data and any other relevant observations. 

The configuration data relevant for our case study included estimates of 
• depths of geological boundaries, in particular the transition to the considered high-pressure formation 

• pore pressure, fracture pressure, and rock hardness (compressive strength) at various depths, 

• the annulus volume up to the depth where our investigation starts, allowing to estimate the lag time of gas carried up in 

the drilling fluid, 

• the influence of the mud flow rate on down-hole equivalent circulating density, 

• the relation between rock hardness, weight on bit, RPM, and rate of penetration, 

• the probability of requiring an extra casing dependent on the casing depth, 

• all relevant costs and benefits connected to various operations under various circumstances, including cost of repairing 

damage made, cost incurred by reduced production of the finished well, etc. 

A complete description of the decision problem at hand has to contain not only the expected values for this configuration data, 
but also a quantification of the uncertainty attached to the numbers. It is for instance not enough to know that geologists 
anticipated the transition to a high-pressure zone to start at a depth of 5800ft TVD. One also needs a quantification that says 
whether this means between 5799ft and 5801ft, or between 5700ft and 5900ft. To be more precise, a probability distribution 
needs to be given that quantifies the possibility that the zone starts at 5700ft, 5800ft, 5900ft, etc. Such a quantified assessment 
of the uncertainty can be specified by 10/90-quantiles, a standard deviation, or in a number of other ways, but it is absolutely 
required. While these uncertainties are not usually stated along with the base case values of the cited configuration data, and 
experts often are struggling to put a number on them when asked, decision analysis commonly applies elicitation methods 
(Bratvold and Begg 2010) which help the experts assessing these probabilities. In decision analysis we are only concerned 

                                                           
4 When one stand has been drilled, a connection needs to be made, i.e. the block is removed from the drilling pipe while another stand is 
attached to it. While making the connection, mud pumps have to be turned off for some minutes, which leads to a reduced downhole 
pressure. This can in turn cause a gas influx that usually disappears when the pumps are turned back on. Such a gas influx is referred to as 
connection gas. 
5 In the context of Bayesian inference, which is the mathematical algorithm embedded in IDs, the configuration data is called the prior. 
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with subjective probabilities whereby probabilities reflect a person’s or a team’s knowledge about the event in questions. 
Probability is a state of knowledge, and not a state of things, and there is no “true” or “correct” probability. The only 
requirement is that the assigned probability truly reflects the expert’s knowledge (Bratvold and Begg 2010). Furthermore, 
sensitivity analysis is an essential element of any decision modeling activity and will provide valuable insights as to whether 
the recommended decision is robust (it will stick) given reasonable variations in the input parameters including the 
probabilities. 

In this case real-time data available in the form of log data included 
• measured depth and true vertical depth 

• RPM, torque, weight on bit, hook load, rate of penetration (ROP) 

• mud flow, stand pipe pressure, trip tank and active system volumes 

• gas in mud (top side) 

RPM, weight on bit, and ROP can be used to obtain a crude estimate of the solidity of the rock being drilled. For instance, 
a drop in ROP while RPM and weight on bit remain unchanged can indicate that drilling has reached a harder formation. 

The decision to be taken at any point in time during a drilling operation is what to do next. While there are many 
possibilities, we singled out the most relevant actions in the case study: 

A1: Continue drilling 

A2: Stop and circulate for a set amount of time 

A3: Increase mud weight and circulate for a set amount of time 

A4: Set a casing now, possibly plugging back first 

Even though the details of operational decisions vary with developing technology, such as extensive down-hole measurements 
and wired pipe, our case study can be seen as representative for the decisions to be made during a drilling operation: they are 
real-time decisions, based on real-time, continuous sensor data, and they influence a continuous process. Some of the data 
involved, like rate of penetration or weight on bit, provides fairly immediate information of the down-hole reality, whereas 
others, like gas or cuttings observed on the platform reflect down-hole happenings with a delay dependent on mud circulation. 

 
Applying Decision Analysis to the Case Study 

We will now illustrate how decision analysis can be applied to an operational decision like that of our case study. We can 
begin with the simplest of influence diagrams describing a single decision to be taken dependent on some observations, given 
in Figure 5. 

 

 
 
 

 
We will use gray nodes are the ones corresponding to observable variables; i.e., those variables whose values are known 

from sensor readings and other observations. Conversely, we will refer to non-observable variables as being hidden. The 
hidden variable “Physical Reality,” represents unknown events like the actual geology, pore pressure, the actual position of the 
bit, etc. The decision node “What’s Next?” represents the decision among the various operational alternatives. Finally, the 
“Utility” node represents the stake holder’s utility, for instance the net present value that results from the whole operation. 

The diagram expresses that we only have the observations as input to make our decision, and not the actual physical 
realities. However, the latter have a connection to our observations. The utility is dependent on our actions and the physical 
reality. 

This generic diagram does not yet help very much in making the actual decision, since it lacks fine structure in both the 
observations and the physical realities, and the connections between them and the utilities. We can analyze the decision 
problem further by first decomposing the nodes representing observations and those representing physical reality. 

Physical 
reality 

Observations What’s Next? 

Utility 

Figure 5 - The simplest of influence diagrams 
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 Since the presence of gas in the well and its provenance is a central aspect of the case, we start by observing the following 
causal chain: 

• At any depth, there is some pore pressure, which depends on the depth as well as the geology surrounding the well. 

• At any moment, we have a measurement of the depth that includes some error. 

• At any moment, there is some equivalent circulating density (ECD) down-hole, which can be estimated using mud 

weight and flow. 

• If the pore pressure is larger than the ECD, gas will flow into the hole. 

• Such gas will be circulated out and measured with a delay given by the lag time, which can be estimated using the 

mud flow and the annulus geometry. 

This connection can be illustrated by the influence diagram in Figure 6. 

 
 
 
The “physical reality” node has been decomposed into nodes for the TVD of the bit, the geology surrounding the wellbore, and 
the pore pressure at the bottom of the wellbore. Three concrete observable variables represent the measured bit depth, 
measured gas influx, and the estimated downhole ECD. The diagram shows the relationship between these values. In order to 
do calculations, the uncertainties need to be quantified. In particular, the probability of various geologies needs to be given, as 
well as the probability of observing a given pore pressure at a given depth for a given geology, etc. Having assessed all the 
probabilities, as well as an actual measured depth and estimated ECD, and the fact that gas is observed, the backward 
reasoning typical of IDs allow us to infer that the pore pressure must have been higher than the ECD, and hence the geology 
might be different than assumed in the drilling plan. 

Providing a complete quantification of “the geology” is difficult as it is hard to assess all the probabilities of different pore 
pressures at different TVDs for the different geologies. Moreover, it is only the local geological situation near the current 
drilling depth that is of importance for the gas influx. Upon conferring with a petroleum geologist, we decided to simplify our 
ID using additional assumptions. The main uncertainty in this context is the depth of the high pressure formation transition. 
The uncertainty range of this depth is a few hundred feet. However, if we knew the distance from the transition; i.e., the 
difference between TVD and the transition depth, we could give a much more precise estimate of the pore pressure. 
Furthermore, for the purpose of this scenario, we chose to neglect other aspects of the geology. This gives us the ID in 
Figure 7. 

 
 
 

Transition 
depth 

Pore pressure Gas Influx 
Distance 

from 
transition

TVD Measured 
Depth 

Downhole ECD Estimated ECD 

TVD Measured 
Depth 

Geology 

Pore pressure 

Downhole ECD 

Gas Influx 

Estimated ECD 

Figure 6 - An ID for a gas influx 

Figure 7 - Factoring out the distance from a formation transition
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Note that the “Distance from transition” node is what is known as a deterministic node, since it merely computes the difference 
of two other variables with no uncertainty added. We mark deterministic nodes with a double outline. The estimated pore 
pressure at a given distance from a formation transition is now comparatively easy to obtain from geologists and the 
information in drilling programs. We have “factored” the uncertainty of the pore pressure into two parts: the distance from the 
transition depth and the remaining uncertainty given that distance. This is a transformation which we applied in the light of 
stated simplifying assumptions that can be discussed with domain experts. 

Next, we can add to our ID that a gas influx can also be caused by a gas pocket, and assess the probability of a gas pocket 
at any given depth. We won’t go into the details, but the principle is the same: the causal chain is modeled, and the ID’s 
Bayesian inference algorithm infers what the updated probabilities of the configuration data must be given the measured real 
time data. 

Having taken gas measurements into account, we can move on to model rock solidity. Decomposing the uncertainty of 
rock solidity, we can now say that 

• The rock at any distance from the formation boundary has some compressive strength 
• The compressive strength, the weight on bit, RPM, and the state of the bit together determine the rate of penetration. 

This is expressed by the diagram in Figure 8: 
 

 
 
 
 
 
 
This diagram is now merged with the one for the gas influx to give the ID in Figure 9. 

 
 
 
 
 
 
 
 

Transition 
depth 

Rock strength 

WOB

Rate of 
penetration
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transition

RPM 

Bit

TVD Measured 
Depth 

Transition 
depth 

Rock strength 

WOB

Rate of 
penetration

Distance 
from 

transition RPM 

Bit

Pore pressure Gas Influx TVD 

Measured 
Depth 

Downhole ECD Estimated ECD 

Figure 8 - An ID for rock strength 

Figure 9 - A combined ID for gas influx and rock strength
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With this configuration, information pertaining to rock hardness and to gas can be combined to give an improved assessment 
of the geological uncertainties. The same method can be used to include further observations like cuttings or downhole sensor 
readings. The principle remains the same. By proceeding in this way, we ultimately obtain a fine grained representation of the 
relevant uncertainties, the observable variables, and the connections between them. Moreover the structure is such that it is 
easily possible to quantify the relations between the variables for a particular drilling operation, enabling calculations. In any 
decision modeling situation, there is always the question: What is the optimal level of detail in the event definition? The 
answer is always: the level at which the experts finds it most meaningful to quantify the uncertainties. In a case like this where 
there is measured real time data, a corollary answer is the level at which the measured data is most relevant for the defined 
event(s).  

We can join the diagram of Figure 9, which structures the relationship between the physical reality and our observables, 
with the initial ID of Figure 5 that represents the operational decision of what to do next, to obtain the ID in Figure 10. 

 

 
 

 

 

 
 
We see that all observable variables have an arrow into the decision node “What’s Next”, representing the fact that their 

values are all available when the decision is to be made. All the hidden variables we obtained by decomposing the “Physical 
Reality” node can influence the utility. 

As before, we can now observe that the way the various hidden variables influence the utility is too coarse grained to make 
the quantification easy or natural. We can gather the various components influencing the utility measure the decision maker(s) 
has decided upon; e.g., net present value. Some values of interest include: 

• The cost of setting one more casing than the drilling program calls for 

• The net present value of the finished productive well. This may be reduced; e.g., by reduced and delayed production 

due to reduced pipe diameter if an extra casing is needed 

• The cost of waiting and circulating for a given amount of time 

• The cost of fracturing the well or the casing structure through too high mud weight 

• The cost of plugging back the well in order to set a casing 

These are again uncertain values, and domain experts need to quantify these uncertainties by giving the probability that any 
of these costs or values takes on a given value. We can split the utility node into several new utility nodes representing the 
different utility components. These can then be connected to the decision node and the relevant hidden variables. In some 
cases the connection between the hidden variables and the utility may be more complex and new variables may be needed. For 
instance, the cost of potentially fracturing the formation by increasing the mud weight is dependent on the fracture pressure, 
which is dependent on the depth in a similar way as the pore pressure, as shown in Figure 11. 

 

Transition 
depth 

Rock strength 

WOB

Rate of 
penetration

Distance 
from 

transition 
RPM

Bit

Pore pressure 

Downhole ECD 

Gas Influx TVD 

Measured 
Depth 

What’s Next? 

Utility 

Estimated ECD 

Figure 10 - An ID for gas influx and rock strength including utility and decision nodes
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In addition to modeling the fracture pressure, we have added a hidden variable to express the fact that the increase in mud 
weight from action A3, “Increase mud weight and circulate for a set amount of time” would make the downhole pressure 
exceed the formation’s tolerance. The utility node is setup such that if this is the case and action A3 is taken, then the cost for 
fracturing the well is incurred. In a similar way, we can model the relevant factors and cause-effect chains for the other utility 
components. 
 

In the CODIO project, we performed this analysis for the complete scenario of our case study. We encountered a number 
of additional challenges, some of which will be discussed in the remainder of this paper. The intention of this section was to 
illustrate how the decision analysis process provides a structure, transparency, and the necessary understanding to make good 
decisions. This includes clearly defining the relevant observable and hidden variables involved, their interdependencies, the 
utilities to maximize, and how they interact with the decision to be made. Given quantitative assessments of the 
interdependencies between the variables, we can use the resulting model for computation and thereby deduce which action 
leads to the highest expected utility. 

We should point out that the structure of the ID we constructed is generic: the same structure can be used whenever 
operational decisions are to be taken when drilling close to a high pressure formation. For a different drilling operation, the 
structure of the ID can be kept, only the numbers in the probability tables need to be adjusted, using the relevant numbers for 
the drilling program, including geology data, risk assessment, etc. 
 
Testing the Influence Diagram 
The ID constructed for the CODIO case study was implemented in a commercial software application and tested in a 
simulation environment. 
 The ID consisted of a fixed structure, constructed as described in the previous section, with most of the conditional 
probability tables filled in by a software program that converted geological data taken from the drilling program into 
appropriate tables. Using the ID for a different operation would have required regenerating those tables from the relevant 
configuration data. Some of the utilities, expressing the cost of various actions under different circumstances, would also have 
to be adapted to fit the operation at hand. 
 The system used for testing, called CODIO Pilot 1, uses the Hugin tool (Madsen et al., 2005) to load the ID and 
perform computations on it. An infrastructure was created to read real time log data from a WITSML server several times per 
minute. After some preprocessing of the data, for unit conversion and such, Hugin is used to derive the expected utility of the 
available operational actions. The pilot provides a Web interface that displays a ranking of the possible actions, where the 
action with the highest expected utility is the one the system recommends. 

To test the pilot system, we used the ELAD drilling simulator (Cayeux, 2007, Hulsund et al., 2009) at IRIS in Stavanger. 
The simulator was configured to provide a similar environment as in the original drilling operation defined by the case study. 
That included providing it with pore pressures, rock properties, mud flow, etc. Obviously, this data was not taken directly from 
the drilling program, since the actual geology encountered in the case study was different from that predicted by the drilling 
program. Rather, we configured the simulator with data that corresponds to what is known about the well in hindsight. This 
made our experiment realistic in the sense that the CODIO decision support tool only had information available before the 
operation, whereas the simulation tool behaved like the actual well did. 

 The operation was simulated with drilling engineers controlling the system. ELAD published simulated log data to a 
WITSML server, which the CODIO pilot was connected to. The drilling personnel were shown the interface of the CODIO 
pilot with its operational recommendations. 
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The system showed sensible behavior in the test: as soon as the gas levels rise over a certain amount, the system advises to 
pause drilling and to increase the mud weight. It continues to do so until the expected cost of fracturing the formation or the 
casing structure is asserted to outweigh the potential benefit of containing the gas influx or at least being able to set a casing 
without plugging back. Given the configuration in the case study, the system then decides that the down-hole pressure is 
already too high to be contained by the drilling fluid, and advises to set a casing immediately, i.e. earlier than envisaged by the 
drilling program. 

We also tested the model on data corresponding to other circumstances, e.g. gas from a gas pocket, or no gas at all and the 
transition at the depth where it was expected. The influence diagram gave sensible recommendations also for these cases. 

While this overall behavior is to be expected from a system that takes all the major aspects of the problem into account, the 
subtlety lies in the thresholds: at which distance from an expected formation boundary is a gas pocket more likely than that the 
formation boundary is already reached? When does the risk of destroying the casing structure outweigh the benefit of 
controlling the gas influx by mud weight? A system based on decision analysis computes these thresholds based on a 
systematic assessment of the structure and magnitude of the uncertainties involved. 
 
 
Challenges 
Although our approach turned out to be feasible, and led to a successful test, there were a number of practical challenges to 
overcome in the construction of the influence diagram. We will discuss some of them in this section. 

One challenge comes from the multitude of parameters in formulae provided by specialists in petroleum engineering. For 
instance, we initially tried to quantify the relationship between the pressure difference down-hole and the amount of gas 
measured. That would have made it possible to use the amount of gas observed to infer an estimate of the current pore 
pressure, which in turn would lead to an improved estimate of the depth of the transition boundary. Formulae that quantify a 
gas influx have indeed been published (e.g. Dake, 1978) but they require parameters describing rock porosity, gas reservoir 
size, and shape. While an up-front estimate of porosity might be available, it is practically impossible to obtain usable 
estimates of the geometry of the gas enclosed in a formation, making it impossible to use such formulae for our purposes. The 
matter is further complicated by the difficulty of describing the way gas percolates to the surface while being transported by 
the mud in a precise way. The consequence of this, as practitioners confirm, is that it is very hard to say anything about the 
pressure difference down-hole from the amount of gas measured. The best we can do is to say that if there is gas, then the pore 
pressure must have been higher than the ECD. 

We made a similar observation with respect to the computation of ECD: there is extensive engineering knowledge about 
the behavior of drilling fluids in the annulus, and these could be used to obtain a precise estimate of the down-hole ECD given 
mud flow, viscosity, annulus geometry, and several other parameters. However, these parameters were hard to elicit for the 
drilling operation in our case study. On the other hand, we asked practitioners at the oil company about this, and they were 
easily able to give an empirical quantification of the impact of mud flow on down-hole ECD when switching off pumps to 
make a connection for the operation we were considering (ca. 0,5ppg).  There was surely a higher uncertainty connected to this 
estimate than to one obtained with a correctly parameterized hydrodynamic model. But the inaccuracy of this practitioners’ 
estimate was still small compared to the other uncertainties described by the ID. 

So in general, a practitioner’s rule of thumb was more useful for this particular kind of probabilistic model than a precise 
formula. This could convey the impression that the recommendations derived from the influence diagram cannot be better than 
the intuitive recommendations of an expert, but that is not the case. Any rules of thumb used in the ID are explicitly expressed, 
i.e. they are part of the explicit assumptions made when modeling. The recommendations derived from the diagram are 
optimal given the assumptions and probabilistic input. A human decision maker can usually not name all the assumptions 
made to arrive at a decision, and the decision is often not optimal with respect to the knowledge and assumptions it is based 
on. So the formalization has its value even if it is not built on a precise theory. It is however very beneficial if the consulted 
expert is trained in the principles and methods of decision analysis, and therefore has an understanding for the necessity of 
quantifying uncertainties. 
 

Another difficulty arises with some of the utilities important in operational decisions. For instance, setting an early casing 
can lead to the need for one more casing than originally planned, and therefore a smaller diameter of the pipe in the finished 
well. This leads not only to reduced total production, but to delayed production, since the petroleum will flow more slowly. A 
delayed production in turn reduces the net present value of the well; the sooner profit is made, the better. But putting a precise 
number on the reduction in net present value is very difficult. The solution here is again to ask a practitioner for help. Since the 
loss in net present value is an aspect that has to be considered every time this kind of derivation from the drilling program is 
considered, decision makers are already, possibly subconsciously, weighing it against other costs. Making these trade-offs 
explicit helps in providing more insight as well as to making the decision more transparent and consistent with the stated 
preferences (utilities). 
 

A more technical kind of challenge comes from the temporal aspects of our case study. To begin with, the sensor values for 
RPM, ROP, and weight on bit give immediate information of the happenings down-hole, while gas readings have a lag time 
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attached to them. This means that sensor data needs to be stored in a data buffer and provided to the ID together with data that 
stems from effects happening down-hole at the same point in time. 

A more subtle time-related aspect comes from the fact that drilling is interrupted to make new connections. This means that 
no assessment of rock solidity is immediately available when a connection is made until drilling is resumed. We solve this by 
remembering solidity-related data from the last time drilling did progress, and feeding that to the ID. 

Finally, if a gas peak is encountered, e.g. from connection gas, and the gas eventually fades, the ID still needs to take this 
into account for further action. Essentially, connection gas indicates that the pore pressure is only barely contained by the 
circulating density, which is important knowledge for operational decisions. We solve this by remembering data from the last 
time a significant amount of gas was observed, and also providing that as input to the ID. 

Taking the lag time effect into account, every computation with our ID uses sensor data from up to 5 different points in 
time. The control software that feeds the log data collected from the WITSML server into the ID managed by the Hugin tool 
takes care of the management of this data, as well as the computation of the times for which data is required. 
 
Lessons Learnt 
Our endeavor shows that it is possible to apply systematic decision analysis to operational decisions in oil and gas drilling 
operations. We do not pretend that it is trivial to do so: it requires both skills in decision modeling and the availability of 
domain experts, preferable also having a basic knowledge of decision theory and probabilistic assessments. In the previous 
section, we have discussed some of the difficulties we encountered, and how we solved them. In this section, we want to make 
some general remarks about lessons learnt while carrying out our case study, which we feel will be valuable for future 
endeavors of this kind. 

First, given a theoretical model for some physical phenomenon, one has to check whether it is possible to obtain a-priori 
estimates for the parameters it contains. It is often easiest and entirely good enough for most purposes to obtain a rule-of-
thumb estimate from someone with practical experience. 

Second, it is important to get full information about the scenario as early as possible. This includes all relevant geological 
data in numerical, machine processable form. In case the decision support tool is to be tested in a simulation environment, one 
needs to remember that logs produced by a simulator will not entirely match those from an actual drilling rig. Log data from 
the simulator should be obtained as early as possible in order to be able to take those differences into account when 
configuring the ID. 

Finally, during the decomposition of the utility function, it turned out that a number of intermediate nodes were required to 
express aspects that concerned the future development of the operation. E.g. one node was required to express whether the 
pressures involved are such that it is at all possible to contain the gas influx using mud weight. Another node expressed that 
the situation was such that a premature casing would eventually have to be set. The necessity for such nodes is a direct 
consequence of the fact that we are using an ID with only one decision node to model a continuous process in which decisions 
can occur at any point in time. Finding these nodes requires an understanding of the operation as a whole, and it is advisable to 
start thinking at an early stage about the possible ways in which an operation might evolve and which (hidden) variables can 
be used to describe these evolutions. 
 
Desiderata 
We have shown that decision analysis can be applied to operational decisions in drilling operations. We have discussed some 
of the challenges we met, and how they could be overcome. But to truly integrate a rational decision making process into 
today’s drilling operations, a number of more basic challenges need to be addressed. They have to do with the facts that (i) 
drilling programs today do not include prior uncertainty assessments of the key events and (ii) the domain experts are ill 
equipped to assess these uncertainties as this is not a central part of their training and operational experience. In addition, we 
believe the following challenges need to be addressed to improve operational decision making during the drilling process: 

• The drilling program needs to identify and describe the key decisions. 
• The utility scale needs to be clarified. All involved parties need to agree on which values their decisions are intended 

to maximize. 
• All of the relevant uncertain events should be defined, described, and have a prior probability assessments (this 

includes uncertainty quantification for cost and value parameters) 
• The drilling program should be based on expected values. Today any unexpected event is by definition negative. 
• The relevance of measured real time data to the key uncertainties must be identified and quantified.  

Today, the operational drilling activity is not described as or thought of as a decision making activity and instead relies on the 
use of intuitive decision making by more or less seasoned experts. This may work well enough in many cases, but it will not 
give good, consistent decisions in general, and it is bad for clarity, transparency, repeatability, and learning. 
 
Future Work 
A number of additional techniques can be applied to decision making in drilling operations. One example is sensitivity 
analysis, which can be used to determine how strongly the result of an ID computation depends on the values of the observable 
variables. Sensor readings are always subject to some degree of uncertainty, and sensitivity analysis can help to find out how 
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heavily a recommended action depends on the given data. This is particularly useful in combination with human background 
knowledge, like e.g. that some sensor currently has a particular problem. 

A related technique is the value of information (VOI) analysis. In many cases, additional data could be obtained about a 
case, which might help to make a better decision. On the other hand, there is usually a cost to data gathering. For instance, in a 
drilling operation, an expert might be asked to analyze cuttings. This would possibly give more information about the geology, 
but it also takes some time. VOI analysis is a method to determine the expected increase in utility from the additional 
information, and thus the maximum amount that should be spent on obtaining the information. 

While these techniques concern real time data, the assessment of configuration data has been a problem in our case study. 
In some cases, it will not be possible to assess the probabilities required for the ID model, or at least only poorly. We are 
currently devising a method based on automated logical reasoning that allows deriving recommendations in some cases even 
when some of the configuration information is missing. Ultimately, with our logic-based approach, we hope to integrate 
aspects like temporal reasoning, or reasoning about the different state of knowledge of the involved actors into the decision 
analysis process. 

 
Conclusion 
We have applied the decision analytic method to a particular kind of operational decision that occurs in petroleum drilling 
operations. As a case study, we took a real situation that occurred on a drilling platform on the Norwegian continental shelf in 
2002. Through a systematic process, we obtained an influence diagram that expresses the structure of the decision. This 
structure can be reused for similar decisions in other operations. Given data from the drilling program and further assessments 
from domain experts, the ID can be configured to recommend operational decisions based on the available sensor data. We 
tested the approach with a well simulator, and it behaved satisfactorily. We have compiled a number of recommendations for 
future decision analysis endeavors for this kind of operational decisions. 
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