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Abstract This paper reports on the ongoing KeY project aimed at
bridging the gap between (a) object-oriented software engineering meth-
ods and tools and (b) deductive verification. A distinctive feature of our
approach is the use of a commercial CASE tool enhanced with function-
ality for formal specification and deductive verification.

1 Introduction

1.1 Analysis of the Current Situation

While formal methods are by now well established in hardware and system design
(the majority of producers of integrated circuits are routinely using BDD-based
model checking packages for design and validation), usage of formal methods
in software development is currently confined essentially to academic research
projects. There are industrial applications of formal software development [§],
but they are still exceptional [9].

The limits of applicability of formal methods in software design are not de-
fined by the potential range and power of existing approaches. Several case stud-
ies clearly demonstrate that computer-aided specification and verification of re-
alistic software is feasible [18]. The real problem lies in the excessive demand
imposed by current tools on the skills of prospective users:

1. Tools for formal software specification and verification are not integrated
into industrial software engineering processes.

2. User interfaces of verification tools are not ergonomic: they are complex,
idiosyncratic, and are often without graphical support.

3. Users of verification tools are expected to know syntax and semantics of one
or more complex formal languages. Typically, at least a tactical program-
ming language and a logical language are involved. And even worse, to make
serious use of many tools, intimate knowledge of employed logic calculi and
proof search strategies is necessary.



Successful specification and verification of larger projects, therefore, is done sep-
arately from software development by academic specialists with several years of
training in formal methods, in many cases by the tool developers themselves.

While this is viable for projects with high safety and low secrecy demands,
it is unlikely that formal software specification and verification will become a
routine task in industry under these circumstances.

The future challenge for formal software specification and verification is to
make the considerable potential of existing methods and tools feasible to use in
an industrial environment. This leads to the requirements:

1. Tools for formal software specification and verification must be integrated
into industrial software engineering procedures.

2. User interfaces of these tools must comply with state-of-the-art software
engineering tools.

3. The necessary amount of training in formal methods must be minimized.
Moreover, techniques involving formal software specification and verification
must be teachable in a structured manner. They should be integrated in
courses on software engineering topics.

To be sure, the thought that full formal software verification might be possible
without any background in formal methods is utopian. An industrial verification
tool should, however, allow for gradual verification so that software engineers
at any (including low) experience level with formal methods may benefit. In
addition, an integrated tool with well-defined interfaces facilitates “outsourcing”
those parts of the modeling process that require special skills.

Another important motivation to integrate design, development, and verifi-
cation of software is provided by modern software development methodologies
which are iterative and incremental. Post mortem verification would enforce the
antiquated waterfall model. Even worse, in a linear model the extra effort needed
for verification cannot be parallelized and thus compensated by greater work
force. Therefore, delivery time increases considerably and would make formally
verified software decisively less competitive.

But not only must the extra time for formal software development be within
reasonable bounds, the cost of formal specification and verification in an indus-
trial context requires accountability:

4. Tt must be possible to give realistic estimations of the cost of each step
in formal software specification and verification depending on the type of
software and the degree of formalization.

This implies immediately that the mere existence of tools for formal software
specification and verification is not sufficient, rather, formal specification and
verification have to be fully integrated into the software development process.

1.2 The K& Project

Since November 1998 the authors work on a project addressing the goals outlined
in the previous section; we call it the KR project (read “key”).



In the principal use case of the KeY system there are actors who want to
implement a software system that complies with given requirements and formally
verify its correctness. The system is responsible for adding formal detail to the
analysis model, for creating conditions that ensure the correctness of refinement
steps (called proof obligations), for finding proofs showing that these conditions
are satisfied by the model, and for generating counter examples if they are not.
Special features of KeY are:

— We concentrate on object-oriented analysis and design methods (OOAD)—
because of their key role in today’s software development practice—, and
on JAVA as the target language. In particular, we use the Unified Modeling
Language (UML) [24] for visual modeling of designs and specifications and
the Object Constraint Language (OCL) for adding further restrictions. This
choice is supported by the fact, that the UML (which contains OCL since
version 1.3) is not only an OMG standard, but has been adopted by all major
OOAD software vendors and is featured in recent OOAD textbooks [22].

— We use a commercial CASE tool as starting point and enhance it by ad-
ditional functionality for formal specification and verification. The current
tool of our choice is TogetherSoft’s TOGETHER 4.0.

— Formal verification is based on an axiomatic semantics of the real program-
ming language JAVA CARD [29] (soon to be replaced by Java 2 Micro Edition,
J2ME).

— As a case study to evaluate the usability of our approach we develop a sce-
nario using smart cards with JAVA CARD as programming language [15,17].
JAVA smart cards make an extremely suitable target for a case study:

e As an object-oriented language, JAVA CARD is well suited for OOAD;

e JAvA CARD lacks some crucial complications of the full JAVA language
(no threads, fewer data types, no graphical user interfaces);

e Java CARD applications are small (JAVA smart cards currently offer 16K
memory for code);

e at the same time, JAVA CARD applications are embedded into larger
program systems or business processes which should be modeled (though
not necessarily formally verified) as well;

e Java CARD applications are often security-critical, thus giving incentive
to apply formal methods;

e the high number (usually millions) of deployed smart cards constitutes a
new motivation for formal verification, because, in contrast to software
run on standard computers, arbitrary updates are not feasible;!

— Through direct contacts with software companies we check the soundness of
our approach for real world applications (some of the experiences from these
contacts are reported in [3]).

The KeY system consists of three main components (see the Figure on the right):

! While Java CARD applets on smart cards can be updated in principle, for security
reasons this does not extend to those applets that verify and load updates.
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— The verification manager: the link between the modeling component and the
deduction component. It generates proof obligations expressed in formal logic
from the refinement relations in the model. It stores and processes partial
and completed proofs; and it is responsible for correctness management (to
make sure, e.g., that there are no cyclic dependencies in proofs).

— The deduction component. It is used to actually construct proofs—or counter
examples—for proof obligations generated by the verification manager. It is
based on an interactive verification system combined with powerful auto-
mated deduction techniques that increase the degree of automation; it also
contains a part for automatically generating counter examples from failed
proof attempts. The interactive and automated techniques and those for
finding counter examples are fully integrated and operate on the same data
structures.

Although consisting of different components, the KeY system is going to be fully
integrated with a uniform user interface.

A first KeY system prototype has been implemented, integrating the CASE
tool TOGETHER and the system IBIJa [16] as (intercative) deduction component
(it has limited capabilities and lacks the verification manager). Work on the full
KeY system is in progress.

2 Designing a System with K§”

2.1 The Modeling Process

Software development is generally divided into four activities: analysis, design,
implementation, and test. The KeY approach embraces verification as a fifth cat-
egory. The way in which the development activities are arranged in a sequential
order over time is called modeling process. It consists of different phases. The
end of each phase is defined by certain criteria the actual model should meet
(milestones).

In some older process models like the waterfall model or Boehm’s spiral model
no difference is made between the main activities—analysis, design, implemen-
tation, test—and the process phases. More recent process models distinguish



between phases and activities very carefully; for example, the Rational Unified
Process [19] uses the phases inception, elaboration, construction, and transition
along with the above activities.

The KeY system does neither support nor require the usage of a particular
modeling process. However, it is taken into account that most modern processes
have two principles in common. They are iterative and incremental. The design
of an iteration is often regarded as the refinement of the design developed in the
previous iteration. This has an influence on the way in which the KeY system
treats UML models and additional verification tasks (see Section 2.3). The veri-
fication activities are spread across all phases in software development. They are
often carried out after test activities.

We do not assume any dependencies be- progress in modeling
tween the increments in the development pro- SRR @
cess and the verification of proof obligations.
On the right, progress in modeling is depicted
along the horizontal axis and progress in ver-
ifying proof obligations on the vertical axis. O,
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— First complete the whole modeling and coding process, only then start to
verify (line (a)).
— Start verifying proof obligations as soon as they are generated (line (b)).

In practice an intermediate approach is chosen (line (c)). How this approach
does exactly look is an important design decision of the verification process with
strong impact on the possibilities for reuse and is the topic of future research.

2.2 Specification with the UML and the OCL

The diagrams of the Unified Modeling Language provide, in principle, an easy
and concise way to formulate various aspects of a specification, however, as Steve
Cook remarked [31, foreword]: “[ ... ] there are many subtleties and nuances of
meaning diagrams cannot convey by themselves.”

This was a main source of motivation for the development of the Object
Constraint Language (OCL), part of the UML since version 1.3 [24]. Constraints
written in this language are understood in the context of a UML model, they
never stand by themselves. The OCL allows to attach preconditions, postcondi-
tions, invariants, and guards to specific elements of a UML model.

When designing a system with KeY, one develops a UML model that is en-
riched by OCL constraints to make it more precise. This is done using the CASE
tool integrated into the KeY system. To assist the user, the KeY system provides
menu and dialog driven input possibility. Certain standard tasks, for example,



generation of formal specifications of inductive data structures (including the
common ones such as lists, stacks, trees) in the UML and the OCL can be done
in a fully automated way, while the user simply supplies names of constructors
and selectors. Even if formal specifications cannot fully be composed in such a
schematic way, considerable parts usually can.

In addition, we have developed a method supporting the extension of a UML
model by OCL constraints that is based on enriched design patterns. In the
KeY system we provide common patterns that come complete with predefined
OCL constraint schemata. They are flexible and allow the user to generate well-
adapted constraints for the different instances of a pattern as easily as one uses
patterns alone. The user needs not write formal specifications from scratch, but
only to adapt and complete them. A detailed description of this technique and
of experiences with its application in practice is given in [4].

As an example, consider the
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The concrete Add and Renove operations in Composite are intuitively clear
but leave some questions unanswered. Can we add the same element twice? Some
implementations of the composite pattern allow this [14]. If it is not intended,
then one has to impose a constraint, such as:

cont ext Conposite:: Add(c: Conponent)
post: self.children—select(p|p = ¢c)—size =1

This is a postcondition on the call of the operation Add in OCL syntax. After
completion of the operation call, the stated postcondition is guaranteed to be
true. Without going into details of the OCL, we give some hints on how to read
this expression. The arrow “—” indicates that the expression to its left represents
a collection of objects (a set, a bag, or a sequence), and the operation to its right
is to be applied to this collection. The dot “.” is used to navigate within diagrams
and (here) yields those objects associated to the item on its left via the role name
on its right. If C is the multiset of all children of the object sel f to which Add
is applied, then the sel ect operator yields the set A ={p € C' | p=c} and the
subsequent integer-valued operation Si ze gives the number of elements in A.
Thus, the postcondition expresses that after adding ¢ as a child to sel f, the
object ¢ occurs exactly once among the children of sel f .

There are a lot of other useful (and more complex) constraints, e.g., the
constraint that the child relationship between objects of class Component is
acyclic.



2.3 The K& Module Concept

The KeY system supports modularization of the model in a particular way.
Those parts of a model that correspond to a certain component of the modeled
system are grouped together and form a module. Modules are a different struc-
turing concept than iterations and serve a different purpose. A module contains
all the model components (diagrams, code etc.) that refer to a certain system
component. A module is not restricted to a single level of refinement.

There are three main reasons behind the module concept of the KeY system:

Structuring: Models of large systems can be structured, which makes them
easier to handle.

Information hiding: Parts of a module that are not relevant for other modules
are hidden. This makes it easier to change modules and correct them when
errors are found, and to re-use them for different purposes.

Verification of single modules: Different modules can be verified separately,
which allows to structure large verification problems. If the size of modules
is limited, the complexity of verifying a system grows linearly in the number
of its modules and thus in the size of the system. This is indispensable for
the scalability of the KeY approach.

In the KeY approach, a hierarchical module concept with sub-modules sup-
ports the structuring of large models. The modules in a system model form a
tree with respect to the sub-module relation.

Besides sub-modules and model components, a module contains the refine-
ment relations between components that describe the same part of the modeled
system in two consecutive levels of refinement. The verification problem associ-
ated with a module is to show that these refinements are correct (see Section 3.1).
The refinement relations must be provided by the user; typically, they include a
signature mapping.

To facilitate information hiding, a module is divided into a public part, its
contract, and a private (hidden) part; the user can declare parts of each re-
finement level as public or private. Only the public information of a module A
is visible in another module B provided that module B implicitly or explicitly
imports module A. Moreover, a component of module B belonging to some re-
finement level can only see the visible information from module A that belongs
to the same level. Thus, the private part of a module can be changed as long
as its contract is not affected. For the description of a refinement relation (like
a signature mapping) all elements of a module belonging to the initial model or
the refined model are visible, whether declared public or not.

As the modeling process proceeds through iterations, the system model be-
comes ever more precise. The final step is a special case, though: the involved
models—the implementation model and its realization in JAVA—do not neces-
sarily differ in precision, but use different paradigms (specification vs. implemen-
tation) and different languages (UML with OCL vs. JAVA).2

2 In conventional verification systems that do not use an iterative modeling process
[25,27], only these final two models exist (see also the following subsection). In such



Below is a schematic example for the levels of refinement and the modules
of a system model (the visibility aspect of modules is not represented here).
Stronger refinement may require additional structure via (sub-)modules, hence
the number of modules may increase with the degree of refinement.
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Although the import and refinement relations are similar in some respects,
there is a fundamental difference: by way of example, consider a system compo-
nent being (imprecisely) modeled as a class DataStorage in an early iteration. It
may later be refined to a class DataSet, which replaces DataStorage. On the other
hand, the module containing DataSet could import a module Datalist and use
lists to implement sets, in which case lists are not a refinement of sets and do
not replace them.

Relation of KR¥ Modules to other Approaches The ideas of refinement and mod-
ularization in the KeY module concept can be compared with (and are partly
influenced by) the KIV approach [27] and the B Method [1].

In KIV, each module (in the above sense) corresponds to exactly two refine-
ment levels, that is to say, a single refinement step. The first level is an algebraic
data type, the second an imperative program, whose procedures intentionally im-
plement the operations of the data type. The import relation allows the algebraic
data type operations (not the program procedures!) of the imported module to
appear textually in the program of the importing module. In contrast to this,
the JAVA code of a KeY module directly calls methods of the imported module’s
JAVA code. Thus, the object programs of our method are pure JAVA programs.
Moreover, KeY modules in general have more than two refinement levels.

The B Method offers (among other things) multi-level refinement of abstract
machines. There is an elaborate theory behind the precise semantics of a re-
finement and the resulting proof obligations. This is possible, because both, a
machine and its refinement, are completely formal, even if the refinement hap-
pens to be less abstract. That differs from the situation in KeY, where all but the
last refinement levels are UML-based, and a refined part is typically more formal
than its origin. KeY advocates the integrated usage of notational paradigms as
opposed to, for example, prepending OOM to abstract machine specification in
the B Method [21].

systems, modules consist of a specification and an implementation that is a refine-
ment of the specification.



2.4 The Internal State of Objects

The formal specification of objects and their behavior requires special techniques.
One important aspect is that the behavior of objects depends on their state that
is stored in their attributes, however, the methods of a JAVA class can in general
not be described as functions on their input as they may have side effects and
change the state. To fully specify the behavior of an object or class, it must be
possible to refer to its state (including its initial state). Difficulties may arise
if methods for observing the state are not defined or are declared private and,
therefore, cannot be used in the public contract of a class. To model such classes,
observer methods have to be added. These allow to observe the state of a class
without changing it.

Example 1. Let class Registry contain a method seen(o: Obj ect) : Bool ean
that maintains a list of all the objects it has “seen”. It returns f al se, if it
“sees” an object for the first time, and t r ue, otherwise. In this example, we
add the function st at e(): Set (Obj ect) allowing to observe the state of an
object of class Registry by returning the set of all seen objects. The behavior of
seen can now be specified in the OCL as follows:

cont ext Regi stry::seen(o: Object)
post: result =state@re() —includes(o) and
state() =state@re() —includi ng(o)

The OCL key word resul t refers to the return value of seen, while @r e
gives the result of st ate() before invocation of seen, which we denote by
oldstate. The OCL expression st at e@r e() —i ncl udes(0) then stands for
0 € oldstate and st at e@r e() —i ncl udi ng( o) stands for oldstate U {0}.

3 Formal Verification with K3

Once a program is formally specified to a sufficient degree one can start to for-
mally verify it. Neither a program nor its specification need to be complete in
order to start verifying it. In this case one suitably weakens the postconditions
(leaving out properties of unimplemented or unspecified parts) or strengthens
preconditions (adding assumptions about unimplemented parts). Data encapsu-
lation and structuredness of OO designs are going to be of great help here.

3.1 Proof Obligations

We use constraints in two different ways: first, they can be part of a model (the
default); these constraints do not generate proof obligations by themselves. Sec-
ond, constraints can be given the status of a proof obligation; these are not part
of the model, but must be shown to hold in it. Proof obligations may arise in-
directly from constraints of the first kind: by checking consistency of invariants,
pre- and postconditions of a superclass and its subclasses, by checking consis-
tency of the postcondition of an operation and the invariant of its result type,



etc. Even more important are proof obligations arising from iterative refinement
steps. To prove that a diagram D’ is a sound refinement of a diagram D requires
to check that the assertions stated in D' entail the assertions in D. A particular
refinement step is the passage from a fully refined specification to its realization
in concrete code.

3.2 Dynamic Logic.

We use Dynamic Logic (DL) [20]—an extension of Hoare logic [2]—as the logical
basis of the KeY system’s software verification component. We believe that this
is a good choice, as deduction in DL is based on symbolic program execution and
simple program transformations, being close to a programmer’s understanding
of JAVA CARD. For a more detailed description of our JAVA CARD DL than given
here, see [5].

DL is successfully used in the KIV software verification system [27] for an
imperative programming language; and Poetzsch-Heffter and Miiller’s definition
of a Hoare logic for a JAVA subset [26] shows that there are no principal obstacles
to adapting the DL/Hoare approach to OO languages.

DL can be seen as a modal predicate logic with a modality (p) for every
program p (p can be any legal JAvA CARD program); (p) refers to the successor
worlds (called states in the DL framework) reachable by running the program p.
In classical DL there can be several such states (worlds) because the programs
can be non-deterministic; here, since JAVA CARD programs are deterministic,
there is exactly one such world (if p terminates) or there is none (if p does not
terminate). The formula (p)¢ expresses that the program p terminates in a state
in which ¢ holds. A formula ¢ — (p)¢ is valid, if for every state s satisfying
precondition ¢ a run of the program p starting in s terminates, and in the
terminating state the postcondition 1 holds.

The formula ¢ — {p)1 is similar to the Hoare triple {¢}p{¢}. In contrast to
Hoare logic, the set of formulas of DL is closed under the usual logical operators:
In Hoare logic, the formulas ¢ and ¢ are pure first-order formulas, whereas in
DL they can contain programs. DL allows programs to occur in the descriptions
¢ resp. Y of states. With is feature it is easy, for example, to specify that a
data structure is not cyclic (it is impossible in first-order logic). Also, all JAva
constructs (e.g., instanceof) are available in DL for the description of states. So
it is not necessary to define an abstract data type state and to represent states
as terms of that type (like in [26]); instead, DL formulas can be used to give a
(partial) description of states, which is a more flexible technique and allows to
concentrate on the relevant properties of a state.

In comparison to classical DL (that uses a toy programming language), a DL
for a “real” OO programming language like JAVA CARD has to cope with some
complications: (1) A program state does not only depend on the value of (local)
program variables but also on the values of the attributes of all existing objects.
(2) Evaluation of a JAVA expression may have side effects, so there is a difference
between expressions and logical terms. (3) Such language features as built-in data
types, exception handling, and object initialisation must be handled.



3.3 Syntax and Semantics of Java Card DL.

We do not allow class definitions in the programs that are part of DL formulas,
but define syntax and semantics of DL formulas wrt a given JAVA CARD program
(the context), i.e., a sequence of class definitions. The programs in DL formu-
las are executable code and comprise all legal JAVA CARD statements, includ-
ing: (a) expression statements (assignments, method calls, new-statements, etc.);
(b) blocks and compound statements built with if-else, switch, for, while,
and do-while; (c) statements with exception handling using try-catch-finally;
(d) statements that redirect the control flow (continue, return, break, throw).

We allow programs in DL formulas (not in the context) to contain logical
terms. Wherever a, JAVA CARD expression can be used, a term of the same type
as the expression can be used as well. Accordingly, expressions can contain terms
(but not vice versa). Formulas are built as usual from the (logical) terms, the
predicate symbols (including the equality predicate =), the logical connectives
=, A, V, =, the quantifiers V and 3 (that can be applied to logical variables but
not to program variables), and the modal operator (p), i.e., if p is a program
and ¢ is a formula, then (p)¢ is a formula as well.

The models of DL consist of program states. These states share the same
universe containing a sufficient number of elements of each type. In each state a
(possibly different) value (an element of the universe) of the appropriate type is
assigned to: (a) the program variables, (b) the attributes (fields) of all objects,
(c) the class attributes (static fields) of all classes in the context, and (d) the
special object variable this. Variables and attributes of object types can be
assigned the special value null. States do not contain any information on control
flow such as a program counter or the fact that an exception has been thrown.

The semantics of a program p is a state transition, i.e., it assigns to each
state s the set of all states that can be reached by running p starting in s.
Since JAVA CARD is deterministic, that set either contains exactly one state or
is empty. The set of states of a model must be closed under the reachability
relation for all programs p, i.e., all states that are reachable must exist in a
model (other models are not considered).

We consider programs that terminate abnormally to be non-terminating:
nothing can be said about their final state. Examples are a program that throws
an uncaught exception and a return statement outside of a method invocation.
Thus, for example, (throw x;)¢ is unsatisfiable for all ¢.3

3.4 A Sequent Calculus for Java Card DL.

We outline the ideas behind our sequent calculus for JAVA CARD DL and give
some of its basic rules (actually, simplified versions of the rules, e.g., initialisation
of objects and classes is not considered). The DL rules of our calculus operate on

3 It is still possible to express and (if true) prove the fact that a program p ter-
minates abnormally. For example, (try{p}catch{Exception e})(—e =null) ex-
presses that p throws an exception.



I' + cnd = true I' + (m prg while (cnd) prg w)¢o
I' + (r while (cnd) prg w)¢
I' + cnd = false I' + (rw)¢ @)
I' + {r while (cnd) prg w)¢
I' + instanceof (exc, T) I' + (m try{e=ezc; q}finally{r} w)¢
I' + (r try{throw exc; pl}catch(T e){g}finally{r} w)¢

I' + —instanceof (ezc, T) I' - (r r; throw ezc; w)¢
I' + (m try{throw ezc; pl}catch(T e){g}finally{r} w)¢

'k (m r wy (5)
I' + (7 try{}catch(T e){g}finally{r} w)¢

Table 1. Some of the rules of our calculus for Java Card DL.

the first active command p of a program mpw. The non-active prefix = consists
of an arbitrary sequence of opening braces “{”, labels, beginnings “try{” of
try-catch blocks, etc. The prefix is needed to keep track of the blocks that the
(first) active command is part of, such that the commands throw, return, break,
and continue that abruptly change the control flow are handled correctly. (In
classical DL, where no prefixes are needed, any formula of the form (p ¢)¢ can
be replaced by (p){q)¢. In our calculus, splitting of {(rpqw)¢ into {wp){qw)¢ is
not possible (unless the prefix 7 is empty) because 7p is not a valid program;
and the formula (7pw)(mqw)¢$ cannot be used either because its semantics is in
general different from that of (rpqw)é.)

As examples, we present the rules for while loops and for exception handling.
The rules operate on sequents I" F ¢. The semantics of a sequent is that the
conjunction of the DL formulas in I" implies the DL formula ¢. Sequents are
used to represent proof obligations, proof (sub-)goals, and lemmata.

Rules (1) and (2) in Table 1 allow to “unwind” while loops. They are sim-
plified versions that only work if (a) the condition cnd is a logical term (i.e.,
has side effects), and (b) the program prg does not contain a continue state-
ment. These rules allow to handle loops if used in combination with induction
schemata. Similar rules are defined for do-while and for loops.

Rules (3)—(5) handle try-catch-finally blocks and the throw statement.
Again, these are simplified versions of the actual rules; they are only applicable
if (a) ezc is a logical term (e.g., a program variable), and (b) the statements
break, continue, return do not occur. Rule (3) applies, if an exception ezc
is thrown that is an instance of exception class T, i.e., the exception is caught;
otherwise, if the exception is not caught, rule (4) applies. Rule (5) applies if the
try block is empty and terminates normally.

3.5 The K3¥ Deduction Component

The KeY system comprises a deductive component, that can handle KeY-DL.
This KeY prover combines interactive and automated theorem proving tech-



niques. Experience with the KIV system [27] has shown how to cope with DL
proof obligations. The original goal is reduced to first-order predicate logic us-
ing DL rules, as demonstrated in the previous section. First-order goals can be
proven using theory specific knowledge about the used data types.

We developed a language for expressing knowledge of specific theories—we
are thinking here mainly of theories of abstract data types—in the form of proof
rules. We believe that this format, stressing the operational aspect, is easier
to understand and simpler to use than alternative approaches coding the same
knowledge in declarative axioms, higher-order logic, or fixed sets of special proof
rules. This format, called schematic theory specific rules, is explained in de-
tail in [16] and has been implemented in the interactive proof system IBIJa
(illwww.ira.uka.de/~ibija). In particular, a schematic theory specific rule
contains: (a) Pure logical knowledge, (b) information on how this knowledge is
to be used, and (c) information on when and where this knowledge should be
presented for interactive use.

Nearly all potential rule applications are triggered by the occurrence of cer-
tain terms or formulas in the proof context. The easy-to-use graphical user in-
terface of IBIJa supports invocation of rule applications by mouse clicks on the
relevant terms and formulas. The rule schema language is expressive enough to
describe even complex induction rules. The rule schema language is carefully
designed in such a way that for every new schematic theory specific rule, IBIJa
automatically generates proof obligations in first-order logic. Once these obli-
gations are shown to be true the soundness of all applications of this rule is
guaranteed. Hence, during each state of a proof, soundness-preserving new rules
can be introduced.

To be practically useful, interactive proving must be enhanced by automating
intermediate proof steps as much as possible. Therefore, the KeY prover combines
the IBIJa with automated proof search in the style of analytic tableaux. This
integration is based on the concepts described in [12,13]. A screen shot of a
typical situation as it may arise during proof construction with our prototype
is shown below. The user may either interactively apply a rule (button “Apply
Selected Rule”) or invoke the automated deduction component (button “Start
PRINS”).



In a real development process, resulting programs often are bug-ridden, there-
fore, the ability of disproving correctness is as important as the ability of proving
it. The interesting and common case is that neither correctness nor its negation
are deducible from given assumptions. A typical reason is that data structures
are underspecified. We may, for example, not have any knowledge about the be-
havior of, say, o s tack tackif sis empty. To recognize such situations,
which often lead to bugs in the implementation, we develop special deductive
techniques. They are based on automatically constructing interpretations (of
data type operations) that fulfill all assumptions but falsify the hypothesis.

elated or

There are many projects dealing with formal methods in software engineering
including several ones aimed at JAVA as a target language. There is also work
on security of JAVACARD and T VE applications as well as on secure smart
card applications in general. We are, however, not aware of any project quite
like ours. We mention some of the more closely related projects.

A thorough mathematical analysis of Java using Abstract State Machines
has been given in [6]. Following another approach, a precise semantics of a Java
sublanguage was obtained by embedding it into Isabelle/HOL [23]; there, an
axiomatic semantics is used in a similar spirit as in the present paper.

The CoG TO project [30] resulted in an integrated formal software develop-
ment methodology and support system based on extended  as specification
language and Ada as target language. It is not integrated into a CASE tool, but
stand-alone.

The project [10] realized CASE tool support for integrating the

0 OOAD process with the formal specification language . The aim was
to formalize OOAD methods and notations such as the UML, whereas we are
interested to derive formal specifications with the help of an OOAD process
extension.

The goal of the  E T project [28] is to enrich the CASE tool  TO 0

for description of distributed systems with means for formal specification
and support by model checking. Applications are embedded systems, description
formalisms are state charts, activity diagrams, and temporal logic.

Aim of the A project is the development of a scientifically founded ap-
proach for software and systems development. At the core is a precise and formal
notion of hierarchical “documents” consisting of informal text, message sequence
charts, state transition systems, object models, specifications, and programs. All
documents have a “mathematical system model” that allows to precisely describe
dependencies or transformations [7].

The goal of the PROSPER project was to provide the means to deliver the
benefits of mechanized formal specification and verification to system designers
in industry (www.dcs. la.ac.uk/ ros er/index.ht 1). The difference to the
KeY project is that the dominant goal is hardware verification; and the software
part involves only specification.



onclusion and the Future o K&

In this paper we described the current state of the KeY project and its ultimate
goal: To facilitate and promote the use of formal verification in an industrial
context for real-world applications. It remains to be seen to which degree this
goal can be achieved.

Our vision is to make the logical formalisms transparent for the user with re-
spect to OO modeling. That is, whenever user interaction is required, the current
state of the verification task is presented in terms of the environment the user
has created so far and not in terms of the underlying deduction machinery. The
situation is comparable to a symbolic debugger that lets the user step through
the source code of a program while it actually executes compiled machine code.
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