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Abstract. We discuss an adaptation of the technique of saturation up
to redundancy, as introduced by Bachmair and Ganzinger [1], to tableau
and sequent calculi for classical first-order logic. This technique can be
used to easily show the completeness of optimized calculi that contain de-
structive rules e.g. for simplification, rewriting with equalities, etc., which
is not easily done with a standard Hintikka-style completeness proof. The
notions are first introduced for Smullyan-style ground tableaux, and then
extended to constrained formula free-variable tableaux.

1 Introduction

The usual Hintikka-style completeness proof for tableau or sequent calculi re-
quires branches to be saturated. This means that for any formula appearing on
a branch and any inference possible on that formula, all formulae introduced by
that inference on at least one of the created branches also appear on the branch.

While this condition poses no problem in the standard calculi for classical
logic, more complicated calculi might allow several different inferences on the
same formula. In that case, none of these inferences may in general delete the
original formula, since it has to remain available for the other inferences to
achieve saturation.

In many cases, destructive rules would make a calculus more efficient. Exam-
ples are rewriting with equalities [5], type reasoning [7], as well as various domain
specific calculi, see e.g. [3], which all use non-destructive rules. The completeness
of destructive variants of these calculi cannot be shown using a Hintikka-style
proof. Sometimes, proof transformation techniques can be used to cope with
destructiveness, see e.g. [6], but these require plenty of creativity and are very
specific to the calculus at hand.

In the context of resolution theorem proving, Bachmair and Ganzinger have
established the admirable framework of saturation up to redundancy, see e.g. [1].
The idea is that a clause can be deleted from a clause set if it is redundant with
respect to the other clauses. Precise definitions are given for what constitutes
a valid redundancy criterion, and then completeness is shown for all inference
systems that obey certain restrictions.



In this paper, the results of Bachmair and Ganzinger are transferred to the
setting of tableau and sequent calculi for classical first-order logic. After intro-
ducing in Sect. 2 some basic notions about the type of calculi we are going to
consider, Sect. 3 presents notions of redundancy and a generic completeness the-
orem for tableaux. In the next two sections, the technique is demonstrated on
two simple calculi. We then extend our notions to free variable calculi in Sect. 6.
This is again followed by a case study, before we conclude the paper in Sect. 8.

2 Semi-sequent calculi

We simplify our presentation by considering only semi-sequent calculi. A semi-
sequent calculus is like a sequent calculus in which the right hand side, the
succedent, of every sequent is empty. Such calculi are also known as block tableau
[8] calculi.

Definition 1. 7 A semi-sequent is a set of formulae written ¢1, ..., ¢, . With
the notation ¢1,...,¢n, I =, we mean a semi-sequent that consists of the set of

formulae {¢1,...,0n} UT.

Definition 2. A tableau for a semi-sequent calculus is a tree where each mode
1s labeled with a semi-sequent.

A derivation consists of a sequence of tableaux, each of which is constructed
from the previous one through the application of an inference on one of the
leaves. The first tableau consists of only the root node, which is labeled with the
initial semi-sequent. A derivation for a formula ¢ is a derivation with initial
semi-sequent ¢ .

A semi-sequent is called closed if it contains L, the false formula, otherwise
it is called open. A tableau is called closed, if the semi-sequents in all leaves are
closed.

The general form of an inference in a semi-sequent calculus is
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We refer to the upper semi-sequents as premises and the lower one as conclusion
of the inference. One of the formulae in the conclusion of every inference is
identified and called the main formula of the conclusion, the others are the side
formulae.

Application of such an inference requires all formulae ¢o1, ..., Pom, of the
conclusion to be present in a leaf semi-sequent. The tree is then expanded by
appending n children to the leaf containing the modified sequents given by the
premises.!

! It may be a bit confusing that proof construction starts from the conclusion and adds
more premises, but this is the common terminology in sequent calculi. A possible
reading is “to conclude that I is unsatisfiable, we have to show that I to I, are
unsatisfiable.”



Given a finite or infinite derivation (7;);ew, we can easily define its limit 7°°,
which may in general be an infinite tree. This possibly infinite tree consists of
possibly infinitely many possibly infinite branches, which again are sequences
(I})ien of semi-sequents. While each tableau in the derivation is contained in
each of its successors, this is not necessarily the case for the semi-sequents on a
tableau branch: inferences might remove formulae from semi-sequents. Still, one
can form a limit semi-sequent,
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consisting of all persistent formulae on the branch.

3 Redundancy

The definitions, lemmas and proofs in this section follow those of [1] very closely.
The main difference is that tableaux and sequent proofs can split into several
branches, which adds a quantifier to most of the notions and requires deciding
whether something should hold for all formulae in one of the new goals or for one
formula in each of the goals, etc. The other difference is that the presentation
is adapted to better fit the style in which tableau/sequent calculi are usually
presented.
We start with a very general notion of redundancy criterion:

Definition 3. A redundancy criterion is a pair (Rz, Rz) of mappings from sets
of formulae to sets of formulae, resp. sets of inferences, such that for all sets of
formulae I' and I":

(R1) if ' C T’ then Re(I') CRx(I"), and Rz(I') C Rz (I™).
(R2) if I" CRe(T") then Re(I') CRA(IC\T"), and Rz(I') CRz(I'\ I").
(R3) if I' is unsatisfiable, then so is I' \ R ().

The criterion is called effective if, in addition,

(R4) an inference is in Rz (1), whenever it has at least one premise introducing
only formulae P = {dk1, ... Pxm, } with P C T UR#(I).

The formulae, resp. inferences in Rz (") resp. Rz(I") are called redundant with
respect to I'.

For an effective redundancy criterion, any inference is redundant that has at least
one premise where no new formula is introduced. This means that inferences that
destroy regularity are redundant.

In contrast to resolution calculi, sequent calculi are usually written in such
a way that an inference can simultaneously add new formulae and remove old
ones that have become redundant. We therefore introduce the following notion:

Definition 4. A calculus conforms to a redundancy criterion, if its inferences
remove formulae from a branch only if they are redundant with respect to the
formulae in the resulting semi-sequent.



The following two Lemmas are taken almost verbatim from [1], where their proofs
can be found.

Lemma 1. Let (I3)ien be a branch of some limit derivation in a conforming

calculus. Then Ry(U,; Ii) € Re(I'*°), and Rz(U,; Ii) € Rz(I'™).

The next lemma is slightly different from the resolution setting, in that the
implication holds in only one direction, due to the splitting into several branches.

Lemma 2. Let (I};)ien be a branch of some limit derivation in a conforming
calculus. If '™ is satisfiable, then also I is satisfiable.

We now define saturation up to redundancy which is what a derivation should
approach on each branch.

Definition 5. A set of formulae I' is saturated up to redundancy with respect
to a given calculus and redundancy criterion, if all inferences from formulae in
'\ Rx(I") are in Rz(I).

A tableau T is saturated up to redundancy with respect to a given calculus
and redundancy criterion if all its limit branches I'*™° are saturated.

While saturation is desired for limit tableaux, the following notion gives a better
idea of how a theorem prover might achieve it.

Definition 6. A derivation (7;)ien in a calculus that conforms to an effec-
tive redundancy criterion is called fair if for every limit branch (I});en of T°°,
and any non-redundant inference possible on non-redundant formulae in I'°°, all
formulae of at least one of the premises of the inference are either in \J, I or
redundant in | J,; I;.

Theorem 1. If a derivation in a calculus that conforms to an effective redun-
dancy criterion is fair, then the limit tableau it produces is saturated.

Proof. Let v be an inference from non-redundant formulae of some limit-branch
' of a fair derivation. Due to fairness, for at least one premise produced by =,
P C\J, ITURE(, I), where P are the formulae ~ introduces on that premise.
According to (R4), v is redundant in | J,; I';, and due to Lemma 1 alsoin I'*°. O

We will now make our discussion more concrete by defining a standard redun-
dancy criterion which is sufficient to prove completeness of most calculi. We will
prove in Theorems 2 and 3 that this standard redundancy criterion is indeed an
effective redundancy criterion according to Def. 3 under certain conditions. To
define the criterion, we require a fixed Noetherian order - on formulae. We place
the restriction on this ordering that 1 must be smaller than all other formulae.

Definition 7. The standard redundancy criterion is defined as follows: A for-
mula ¢ is redundant with respect to a set of formulae I', iff there are formulae
G1y- .oy On €T, such that ¢1,...,¢0n E @ and ¢ = ¢; fori=1,... n.

An inference with main formula ¢ and side formulae ¢1,...¢, is redun-
dant w.r.t. a set of formulae I', iff it has one premise such that for all formu-
lae & introduced in that premise, there are formulae V1, ...,y € I', such that
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Theorem 2. The standard redundancy criterion of Def. 7 is indeed a redun-
dancy criterion according to Def. 3.

Proof. Property (R1) follows directly from Def. 7. For property (R2), if ¢ €
Rx(I), consider all finite sets Iy C I' of formulae smaller than ¢ which imply
¢. Every finite set can be considered a multiset, so they can be ordered according
to the multiset extension of >. Take a minimal such set. No element of Iy can be
redundant in I'; since otherwise it could be replaced by some even smaller ele-
ments of I', contradicting the minimality of I'y. Therefore Iy C I'\R#(I"), which
means that ¢ € Rz(I'\ Rx(I")), and since this holds for arbitrary redundant ¢,

Re(I') CRF(I"\ Re(I")) (*)

To show the Rz part of (R2), let I” C Rz(I"). This implies that I'\ Rz(I") C
I'\I". From (R1) we get R(I'\R#(I")) C R#(I"\I"), and together with (x),
Rz(I') € Rxe(I'\ I'"). For the Rz part of (R2), we consider a premise where
every new formula £ is implied by the side formulae and some formulae smaller
than ¢. The same argument as for R can be applied to each of these &.

For (R3), we just showed that every redundant formula ¢ € Rz(I") is implied
by some non-redundant ones. Therefore I'\ Rz (I") = Rz ("), from which (R3)
follows. O

No inference in a calculus conforming to this redundancy criterion can remove
L from a semi-sequent, since L, as the smallest formula, is not redundant with
respect to any set of formulae. In other words, the literal L is always persistent.
Under the following restriction, the standard redundancy criterion is effective:

Definition 8. A calculus is called reductive if all new formulae introduced by
an inference are smaller than the main formula of the inference.

Theorem 3. The standard redundancy criterion is an effective redundancy cri-
terion for any reductive calculus.

Proof. Let an inference with main formula ¢ introduce a formula £ € T'UR #(I")
on some premise. In a reductive calculus, ¢ = €. If £ € ', then £ is itself a
formula smaller than ¢ which implies £. If £ € Rz(I"), then ¢ is implied by
formulae in I' which are smaller than ¢ and therefore also smaller than ¢. If
this is the case for all formulae introduced in one premise of the inference, that
inference is redundant according to Def. 7. a

For the following concept, we assume a fixed model functor I, which maps
any saturated? set of formulae I" that does not contain L to a model I(I), as
well as a fixed Noetherian order > on formulae.

Definition 9. Let I' be saturated up to redundancy with respect to some re-
dundancy criterion. A counterexample for I(I") in I" is a formula ¢ € I" with
I(I") [~ ¢. Since = is Noetherian, if there is a counterezample for I(I') in I,
then there is also a minimal one.

2 This is a slight enhancement to the presentation of Bachmair and Ganzinger, who
require the model functor to be defined on any (multi-)set. Knowing that the set is
saturated can make it easier to define a suitable model in some cases.



A calculus has the counterexample reduction property, if for any saturated
I' not containing L and minimal counterexample ¢, the calculus permits an
inference
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with main formula ¢ where I' = {¢, o1, - - -, Gome } U Lo such that I(I") satisfies

all side formulae, i.e. I(I") = ¢o1, - - ., Pomy, and each of the premises contains
an even smaller counterexample Gix,;, i.e. I(I') & dir, and ¢ > b, -

The following lemma is similar in purpose to the usual ‘model lemma’ in a
Hintikka-style completeness proof.

Lemma 3. Given a calculus that

— conforms to the standard redundancy criterion, and
— is reductive, and
— has the counterexample reduction property,

any set of formulae I' that is saturated up to redundancy w.r.t. that calculus and
the standard redundancy criterion, and that does not contain 1, is satisfiable,
specifically, I(I') ET.

Proof. If the model I(I") is not a model for I', then I" contains a minimal coun-
terexample ¢. This ¢ cannot be redundant w.r.t. I" since it would otherwise have
to be a logical consequence of formulae smaller than ¢ in I', and all such formu-
lae are satisfied by I(I'). Since the calculus has the counterexample reduction
property, there is an inference with main formula ¢, and I(I") satisfying all side
formulae ¢1, ..., ¢,, which produces a smaller counterexample ¢’ on each new
premise. Since I is saturated, this inference must be redundant. This means
that the inference has one premise, such that for the smaller counterexample
@' in that premise (like for all other introduced formulae), there are formulae
1, ..., m € I', all smaller than ¢, with t1,...,Pm, ¢1,..., 0, E ¢'. Since the
; are smaller than ¢, they too are valid in I(I"), and so I(I") = ¢, so ¢’ cannot
be a counterexample after all. We conclude that I(I") is a model for I'. O

Theorem 4. If a calculus

— conforms to the standard redundancy criterion, and
— s reductive, and
— has the counterexample reduction property, then

any fair derivation for an unsatisfiable formula ¢ contains a closed tableau.

Proof. Assume that there is a fair derivation 7y, 77,72,... with a limit 7°°,
where none of the 7; is closed. 7°° has at least one branch (I});en that does
not contain 1. For assume that all limit branches contain 1. These persistent
formulae were introduced by some inferences in the sequence (7;). Make a new
tableau 7’ by cutting off every branch below the introduction of a L literal.
Then 7' has only branches of finite length and is finitely branching. Thus, by



Konig’s Lemma, 7’ must be a finite closed tableau for ¢. One of the tableaux 7;
must contain 7’ as initial sub-tableau, and thus 7; is closed, contradicting the
assumption that there is no closed tableau in the derivation.

Now consider such an open limit branch (I5);en with persistent formulae
I'*° Z 1. Due to fairness, I'™ is saturated. Lemma 3 tells us that I"*° is satisfi-
able, and due to Lemma 2, also the initial sequent Iy and with it ¢ is satisfiable,
contradicting our assumptions. a

4 Case Study: Smullyan style NNF Tableaux

We will start by studying a familiar calculus, namely a semi-sequent calculus
for first-order formulae in negation normal form (NNF). Completeness of this
calculus can easily be shown with a Hintikka-style proof, but it is also a good
introductory example for our new technique.
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In the CLOSE rule, we consider =L to be the main formula, and L a side
formula, since —L is always larger than L. For the model functor, we take the
set of all ground terms as domain, and we define that I(I") | L exactly for
positive literals L € I'. We let > order formulae by the number of boolean
connectives and quantifiers appearing.

The calculus conforms to the standard redundancy criterion, since for each
of the rules, the formulae deleted from the semi-sequent are clearly implied by
the remaining ones. In particular for the CLOSE rule, the false formula | implies
any other formula. For the « rule, the new formula [x/t]¢ does not imply the
original Vz.¢, but this is not required, since the original formula is kept.

The calculus is also reductive, since all rules introduce only formulae smaller
than the respective main formula. Moreover, the calculus has the counterexample
reduction property. For assume that I(I") £ ¢ for some ¢ € I'. If ¢ = 1 A ¢
is a conjunction, this means that I(I') does not satisfy one of the conjuncts,
w.l.o.g. ¢1. An « inference on ¢ is possible which produces ¢, which is smaller
than ¢.

If ¢ = ¢1 V ¢2 is a disjunction, then I(I") fails to satisfy both disjuncts,
and therefore each of the premises produced by the ( rule contains a smaller
counterexample.

In the case of a universally quantified formula, ¢ = Vx.¢;, there has to
be some term ¢ such that I(I") & [x/t]¢1. The 7 rule can be used to introduce



[x/t]¢1, and clearly Vz.¢1 = [z/t]¢1, so we have reduced the counterexample. For
an existentially quantified formula, I(I") f& 3x.¢1, in particular I(I") = [x/c]é1,
so [x/c]¢1 is a smaller counterexample.

¢ cannot be a positive literal, since I(I") is defined to satisfy all positive
literals. Finally, if ¢ = —L is a negative literal, then I(I") = L, and therefore
L € I'. This allows an application of the CLOSE rule, which produces the smaller
counterexample L. Note that I(I") does indeed satisfy the side formula L.

Thus, Theorem 4 allows us to conclude that this calculus is complete for first
order formulae in negation normal form.

5 Case Study: NNF Hyper-Tableaux

We now consider a negation normal form (NNF) version of the hyper-tableaux
calculus. See [6] for an explanation of how this calculus relates to the clausal
hyper-tableau calculus.

We will use the concept of disjunctive paths (d-paths) through formulae. The
set of d-paths of a formula ¢, denoted dp(¢), is defined by induction over the
structure of ¢ as follows.

— If ¢ is a literal or a quantified formula Vz.¢; or 3x.¢1, then dp(¢) := {(4)}.

— If ¢ = ¢1 A @2 is a conjunction, then dp(¢) := dp(¢1) U dp(¢p2).

— If ¢ = ¢1 V ¢ is a disjunction, then dp(¢) := {uv | u € dp(¢1),v € dp(d2)},
where uv is the concatenation of two paths v and v.

For instance, for the formula ¢ = (p A =p) V (¢ A —q), this definition gives:

dp(p A —p) = {(p), (-p)}
dp(g A —q) = {{2), (—q)}
dp(¢) = {(p, @) , (p,~a) , (-p, @) , (P, ~q)}

Note that we do not consider paths below quantifiers, in order to keep our
discussion as simple as possible. A positive d-path is a d-path that contains no
negated literal. In the example, (p,q) is the only positive d-path. Any d-path
that is not positive must contain at least one negated literal, and in particular a
left-most one. Let Imn(¢) be the set of left-most negated literals of the d-paths
of ¢. In the example, Imn(¢) = {—~q, —p}.

Consider the following semi-sequent calculus for NNF formulae:
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where ¢ V 1 has at least one positive d-path.
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where =L € Imn(¢).

In the CLOSE rule and the SIMP rule, L is a side formula. By ¢[L] we denote the
result of replacing the negative literal =L by the falsum L, and then simplifying
the formula by repeated application of the transformations ¢ A L = 1 and
¢V L = ¢. For instance, ((-pAq)V7r)[p]= (LAg)Vr=LVr=r.

We again define the model functor, such that the domain of I(I") consists of
all ground terms, and I(I") = L for a positive literal L, exactly if L € I'. We
will also use the same ordering as in the previous section.

The «, 3, v, 6, and CLOSE rules conform to the standard redundancy criterion
as before. In the SIMP rule, the formula ¢ is dropped. Since =L € Imn(¢), the
simplification to ¢[L] is indeed going to reduce the size of the formula, and an
induction over the transformation steps leading to ¢[L] easily convinces us that
indeed L, ¢[L] E ¢, so ¢ is redundant in the new sequent.

Also, the calculus is clearly still reductive, since if =L € Imn(¢), then ¢ >
¢[L]. As for the counterexample reduction property, the arguments are the same
as in the previous section for literals, conjunctions, and quantified formulae. For
disjunctions, there are two cases. If ¢ = ¢1 V ¢ has at least one positive d-path,
a ( inference will reduce the counterexample as before. Otherwise, every d-path
of ¢ contains some negative literal. Then, there are again two cases: In the first
case, I" contains some L with =L € Imn(¢). In particular, L is then smaller than
¢, and therefore I(I") = L. Similarly as before, we can convince ourselves that
then I(I") £ @[L], so the SIMP rule produces a smaller counterexample. In the
second case, there isno L € I" with =L € Imn(¢). Due to our definition of I this
means that every left-most negative literal is satisfied by I(I"), and therefore
every d-path of ¢ contains at least one satisfied literal. Now a simple induction
on the structure of ¢, taking into account the definition of d-paths, tells us that
also I(I") | ¢ contradicting the assumption that ¢ is a counterexample.

Theorem 4 now tells us that also this calculus is complete.

SIMP

6 Free Variable Tableaux

In this section, we shall lift the presented technique to a certain type of free
variable tableaux, namely constrained formula free variable tableaux.They differ
from the tableaux we have considered until now in two ways:

First, the formulae in the semi-sequents may contain free variables, although
the formulae in the initial Iy shouldn’t. Free variables are used as placeholders
for instantiations that a theorem prover would otherwise have to guess.

Second, semi-sequents actually contain constrained formulae ¢ < C' con-
sisting of a formula ¢ and a constraint C'. For our purposes, the constraint is a
formula of a subset of first order logic that will be interpreted over the domain of
ground terms, using fixed interpretations for any predicate symbols. For instance
in some calculi, the constraint language might be restricted to conjunctions of
equations, written s = t denoting the syntactic equality of terms, in other cases,



disjunction and negation or even quantifiers may be allowed in the constraint
language, or ordering constraints s > ¢ may be available to compare terms with
respect to some term ordering. For us, it is only important that there is a func-
tion Sat which for any constraint produces the set of ground substitutions that
satisfy the constraint. For instance, one will usually have?

Sat(s=t)={o € G| os=ot}
Sat(C & D) = Sat(C) N Sat(D) (1)
Sat(!C') = G \ Sat(C)

etc., so & denotes conjunction of constraints, ! negation of constraints, where G
is the set of all ground substitutions.

A constrained formula ¢ < C' in a semi-sequent means that the formula
has resulted from some sequence of inferences that are only sound (or more
generally desired) in cases where the free variables get instantiated as described
by C. Ultimately, the constraints will get propagated until they reach | < C, of
which a suitable combination has to be found to close all branches of the proof.

Definition 10. A tableau of a constrained formula tableau calculus is closed
under o, where o is a ground substitution for the occurring free variables, iff
every leaf sequent of the tableau contains a constrained formula ¢ < C with
o € Sat(C). A tableau is closable if there exists a o under which it is closed.

The following definition describes how to apply a substitution to a semi-sequent
or to a whole tableau, while discarding any formulae which carry a constraint
that is not satisfied by that substitution.

Definition 11. Let I' be a set of constrained formulae. We define
ol ={0¢|p < C eI with o € Sat(C)}

Let T be a tableau. We construct T by replacing the semi-sequent I' in each
node of T by ol.

The next definition uses these notions of substitution to establish a tight corre-
spondence between constrained variable calculi and the non-free-variable, non-
constrained calculi described in the previous sections. The correspondence is ac-
tually the same as that between Smullyan-style first order tableaux and Fitting-
style [4] free variable tableaux.
Definition 12. Let

n+ - Ik

I

be an inference of a constrained formula tableau calculus. The corresponding
ground inference under o for some ground substitution o is

cli v -+ ol F
O'FO

3 We use the prenex notation “ot”, etc., for the application of substitutions.



The corresponding ground calculus is the calculus consisting of all correspond-
ing ground inferences under any o of any inferences in the constrained formula
calculus.

We use the word ‘ground’ for notions without free variables. There might well be
quantifiers in the formulae involved. Any given inference of the constrained for-
mula calculus can in general have infinitely many different corresponding ground
inferences for different o, but each of them is an ordinary, finite ground inference.

Using the correspondence to a ground calculus, we can define the same prop-
erties as before for constrained formula tableaux:

Definition 13. A constrained formula calculus conforms to a given redundancy
criterion, has the counterexample reduction property, or is reductive iff the
corresponding ground calculus has that property.

Note that a constrained formula calculus can always discard a formula with an
unsatisfiable constraint, since it disappears under any substitution. Therefore, a
ground inference corresponding to the deletion of a formula with unsatisfiable
constraint does not change the semi-sequent, so it trivially conforms to any
redundancy criterion.

Finally, a notion of fairness is needed. Again this definition is heavily based
on the ‘ground’ notion. We will discuss its implications after Theorem 5.

Definition 14. A constrained formula tableau derivation (7;)ien in a calculus
that conforms to an effective redundancy criterion is called fair if there is a
ground substitution o for the free variables, such that (07;);en 18 a fair derivation
of the corresponding ground calculus. We call such a o o fair instantiation for
the constrained formula tableau derivation.

It is now easy to show completeness for well-behaved calculi:
Theorem 5. If a constrained formula calculus

— conforms to the standard redundancy criterion and
— 1is reductive
— has the counterezample reduction property, then

a fair deriwation for an unsatisfiable formula ¢ contains a closable tableau.

Proof. Let o be a fair instantiation for (7;);en. Then (07;);en is a fair derivation
of the corresponding ground calculus and o7y = 7y, since the initial formula ¢
does not contain free variables. Theorem 4 ensures that some o7; is closed.
Therefore, 7; is closed under o. ad

The big question is of course whether a constrained formula calculus actually
admits fair derivations, and how these can be constructed algorithmically. There
are two issues to be discussed here.

The first is that a series of inferences on a branch might ‘change’ the con-
straint of a formula ¢, successively deriving ¢ < Cpy, ¢ < Ci,.... None of



these formulae is persistent in the usual sense of the word. Still, there can be a
substitution o € Sat(Cy) N Sat(C1) N ---. The instantiation o¢ is therefore per-
sistent, and a fair derivation must eventually perform inferences that correspond
to ground inferences on o¢.

Consider for instance a calculus with the following hypothetical rules:

p(t) < A,p(f(t) <A I+ L< Ak
STEP CLOSE ——————————
p(t) < AT+ r(t) < A, T'F

for any term ¢ for any term ¢t

q(s) K A& B&s=tr(s) K A&!(B&s=t),p(t) < B, T+

r(s) < A,p(t) < B, T+
for any terms s, t

REDUCE

where & is conjunction and ! is negation of constraints, and = denotes syntactic
equality, as described by the equations (). From a sequent

r(X), pla) F
we can derive, using REDUCE
(X)) X=a,r(X)<!X =aqa,pla)F
and then, with STEP,
X)X =a,r(X)<!'X =a, pla), p(f(a))
Now we apply REDUCE again:
g X)< X =fla),¢X) < X =a,rX)<!X =a&! X = f(a), pla), p(f(a) b

and so on. The constraint on r(X) gets more and more complicated, and none
of the constrained formulae is persistent. But for fairness, we must eventually
apply CLOSE, since this will not become redundant whatever the instantiation
for X (unless there are other rules which eventually close the branch).

For some calculi, like standard free variable tableaux without constraints,
such situations simply cannot occur. If they can however, a possible solution is to
use a theorem proving procedure that achieves fairness not by managing a queue
of formulae that remain to be processed, but a queue of rule applications: Any
new constrained formula introduced to a branch should be checked for possible
inferences in combination with other present formulae. All possible inferences
should eventually be considered in a fair manner, even if the original constrained
formula gets deleted or changed. When an inference’s turn has come, it should
be checked whether there are now formulae in the semi-sequent on which it can
be applied.



The second issue is that of the fair instantiation of free variables. In many
calculi, free variables are only introduced by a v rule like*

[/ X]p, V.00, T
Ve.p, '+
with a new free variable X.

The corresponding ground inferences are

[x/t]p, V.o, T+
Vr.p, I'

for any term ¢. In general, if a formula Vz.¢ is persistent on some branch of a fair
ground derivation, this rule needs to be applied for all ground terms ¢, with the
possible exception of terms for which [z/t]¢ happens to be redundant. Therefore,
in the calculus with free variables, a fair instantiation can in general only exist if
infinitely many copies of [x/X;]¢ with different free variables are introduced on
the branch. Therefore, the theorem proving procedure has to apply the « rule
again and again. The fair instantiation can then be defined by taking for instance
an enumeration (¢;);en of all ground terms and requiring that o X; = ¢;.

This is not necessarily the case for every rule that introduces a free variable.
For instance, in Sect. 6 of [5], a constrained formula tableau version of the
basic ordered paramodulation rule [2] is given, in which the new free variable is
constrained to only one possible instantiation. Therefore, this rule needs to be
applied only once.

Although these observations about fairness should cover the most common
cases, in the framework given so far, the question ultimately has to be considered
for each calculus. It will be an interesting topic for future research to find sen-
sible restrictions of the given framework that permit general statements about
fairness.

Another general remark is in order concerning our ‘lifting’; i.e. the relation
between our free variable calculi to ground calculi. In particular for equality
handling by rewriting, it is important to restrict the application of equalities to
non-variable positions. This means that an inference that acts only on the instan-
tiation of some free variables should not be needed. The framework presented so
far does not help in excluding such inferences. A corresponding refinement is a
further topic for future research.

7 Case Study: Free Variable NNF Hyper-Tableaux

We will now study a constrained formula version of the NNF hyper-tableaux
calculus of Sect. 5. Completeness of such a calculus has previously been shown
using proof transformation arguments [6], but the proof using saturation up to

4 When we don’t write constraints, we mean the trivial constraint that is satisfied by
all instantiations of the free variables.



redundancy will be a lot simpler. We will start from pre-skolemized formulae
that contain no existential quantifiers, to avoid discussing the soundness issues
that arise in connection with free variables in  rules.

The rules of our calculus are as follows:

Pp<L AT Yy<ATE

PV << AT
where ¢ V ¥ has at least one positive d-path.

P A Y<KATE
PANY KA T

[/ X]p < A Ve.p < A, T

Ve.p < A, T+ CLOSE
for a new free variable X
pwplull K L=M& A& B,¢ < A&NL=M&B), LK B,I'+

¢p<A L<B, Tk
where =M € Imn(¢) and p is a most general unifier of L and M.

1< L=M&A&BF
L<A -M<«B,I'F

SIMP

It is not hard to see that the ground instances corresponding to the «, 3, 7,
and CLOSE rules are exactly the inferences of the respective rules in Sect. 4.

For the SIMP rule, the corresponding ground inference under some instantiation
ceSat(L=M& A& B) is

ooloL], oL, I+
ocp, oL, "+

which is just the siMP rule of Sect. 5. For all o ¢ Sat(L = M & A & B), the
constraints ensure that the corresponding ground inference under o does not
change the sequent. It follows that apart from the missing § rule, the corre-
sponding ground calculus is exactly the one from Sect. 5.

We conclude that any proof procedure that produces fair derivations in this
calculus is complete. Let us analyze what is needed for fairness: free variables can
only be introduced by the  rule, so as discussed before, it needs to be applied
infinitely often on each branch for any persistent occurrence of a constrained
formula Vz.¢ < C, producing formulae [z/X;]¢ with distinct variables. Since
there are no rules that could delete such an occurrence, all occurrences of uni-
versally quantified formulae are persistent. The corresponding fair instantiation
o needs to make sure that if o € Sat(C'), then there is an X; with o X; = ¢ for
every ground term ¢. This is of course a well-known ingredient in many tableau
completeness proofs.

Do we have the fairness problem of persistent ground instances c¢ of non-
persistent formulae ¢ < C' described in the previous section? Yes, we do! The
SIMP rule can lead to similar chains of inferences as the REDUCE rule. Consider
a formula ¢ = (=p(X) A =p(b)) V ¢(X) in the place of the r(X) in the REDUCE
example. From a series of literals p(a), p(f(a)), ..., the SIMP rule allows to derive
q(a),q(f(a)),..., constantly changing the constraint on ¢, although a SIMP on
the other left-most negative literal —p(b) might be possible all the time and
necessary for completeness.



In this calculus, there is an easier way of coping with this problem than the
one we hinted at in Sect. 6: Theorem 3 of [6] establishes the interesting fact
that under certain sensible restrictions, our calculus always permits only a finite
number of inferences without intervening ~ inferences. This means that we can
obtain fairness simply by requiring derivations to be built in such a way that ~y
inferences may only be applied when there are no more possible SIMP inferences.

This illustrates that the fairness question can be quite subtle, depending on
the particular calculus at hand.

8 Conclusion

We have introduced a notion of saturation up to redundancy for tableau and
sequent calculi, closely following the work of Bachmair and Ganzinger [1] for
resolution calculi. We have shown a generic completeness theorem that makes it
easy to show completeness of calculi with destructive rules. Notions and proofs
were lifted to the case of free variable tableaux with constrained formulae. Some
examples were given to illustrate the method.

Future work includes finding a generic way of achieving fairness for free vari-
able calculi. A method of lifting that does not require inferences below variable
positions would be needed to apply our technique to equality reasoning. One
might also consider defining when whole branches are redundant with respect
to the rest of a tableau, to allow redundancy elimination on the branch level. It
might also be interesting to adapt the idea of ‘histories’ used in [5] instead of
constraints with negations to our framework.
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