Specification of a Network Adaptation Layer for the Grid

GGF7 presentation

Michael Welzl
michael.welzl@uibk.ac.at
University of Innsbruck
Outline

- Problem statement
- Proposed solution
 - what
 - why
 - how
- Just 10 mins… no time to conclude ;-)
Note: we simplify!

• Assumption 1:
 all is done @ end nodes
 - No dedicated network
 - No management / control of network resources

• Assumption 2:
 realistic usage of existing Internet technology
 - No QoS mechanisms like DiffServ or IntServ
 - No QoS routing, no Active Networks

• Assumption 3:
 a single end2end connection!
 - No overlay structure
 - No distributed schemes ... no P2P, caching, etc.
Current use of the Internet

- **TCP**
 - byte stream from source to destination
 - reliable, connection oriented service
 - all kinds of complex features
 - window based flow and congestion control
 - RTT estimation, self-clocking, parameters: max. / init. window size, ...
 - slow start / congestion avoidance
 - flavors: Tahoe, Reno, NewReno, SACK, with and w/o ECN, ..

- **UDP**
 - connectionless service
 - ports and a checksum ... that's it :)
 - simpler, but useless for reliable transport (DIY)
 - What about congestion control?
Some (realistic) things we can do...

• Alter packet size

• Tune TCP parameters
 - decide which TCP flavor to use, fiddle with window size, ..

• Implement rate control on top of UDP

• Use new technologies, like...
 - UDP Lite: transmission of erroneous payload
 - SCTP: transport level multihoming, reliable out-of-order transmission
 - DCCP: congestion control for datagrams (connectionless)

• Measure and do something... maybe adapt payload...
Proposed solution
What: an “Adaptation Layer”

- **Applications**
- **Adaptation Layer**
- **Transport / Network Layer**

- QoS requirements
- Traffic specification
- Control of network resources
- QoS feedback
- Performance measurements
Why we need it

• Application relieved of burden
 - more sophisticated transmission mechanisms possible
 - tailored network usage instead of “one size fits all” (just UDP / TCP)

• Network provides service - app specifies QoS requirements
 - Adaptation layer makes the most out of available resources

• Adaptation layer provides QoS feedback
 - Information logically closer to application

• Full transparency to application
 - gradual deployment of new transport mechanisms
How it could work: application interface

- from application
 - QoS spec
 - apply weights to QoS parameters
 - goal: tune trade-offs (packet sizes, ..)
 - Examples:
 - reduced delay is more important than high throughput
 - I don’t care about a smooth rate (I use large buffers)

 - Traffic spec
 - Example: long lasting stream, “greedy"

- to application
 - “video frame complete” instead of “throughput = ... loss = ... “, ..
How it could work: internals

- **Control of network resources**
 - Tune packet size
 - maximize throughput + minimize delay according to QoS spec
 - Choose congestion control + tune parameters
 - based on QoS-centric evaluation of mechanisms: RAP, TFRC, TEAR, LDA+, GAIMD, Binomial CC., ..
 - Negotiation: DCCP
 - Further functions: buffer, bundle streams, ..
 - Example: long-term stream, sporadic interruptions + delay not important ⇒ buffer, don't restart CC

- **Performance measurements**
 - use existing tools (NM-WG) + passively monitor TCP
Bringing it to life

• Now
 - architectural design: interfaces, QoS spec format, ..
 - could be done in IETF for other apps, but:
 • Grid apps have special QoS requirements / traffic properties
 => tailored architecture

• Future
 - a lot of work required (QoS-evaluation of CC., DCCP, ...)
 - extension to use “real” QoS mechanisms, distributed measurements, coordination protocol, ...
 - could grow along!

• RG? WG? Document(s?) in existing RG / WG?