On the Limited Usefulness of the Datagram Congestion Control Protocol (DCCP)

I like the protocol. What I have to say makes me sad.
DCCP design motivation

• Some apps want **unreliable, timely delivery**
 - e.g. VoIP: significant delay = 😞 ... but some noise = 😊

• Unresponsive applications
 - endanger others (congestion collapse)
 - may hinder themselves (queuing delay, loss, ..)

• Implementing congestion control is difficult
 - illustrated by lots of faulty TCP implementations
 - should use precise timers ⇒ should be placed in kernel

• **DCCP =** e2e transport protocol for unreliable flows, well-defined framework for congestion control mechanisms
 - E.g. TCP-like congestion control or TFRC (smoother rate)
Classifying DCCP applications

- Congestion control trade-off (selfish single-flow view):
 + reduced loss
 - necessary to adapt rate
 - Use sender buffer, drain it with varying rate
 - Change encoding

Trade-off: sender buffer size (=delay) vs. frequency of encoding changes

VoIP, Games Videoconf. Streaming Media

Delay sensitive Sweet spot? Delay insensitive
Is TCP the ideal protocol for one-way streaming media?

- Perhaps! Let's consider what happens...
- Remember: we're at the "buffering" side of the spectrum
 - Buffers (delay) don't matter
 - User perception studies of adaptive multimedia apps have shown that users dislike permanent encoding changes (big surprise :-)

⇒ no need for a smooth rate!
- Little loss case: TCP retransmissions won't hurt
- Heavy loss case:
 - DCCP: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10...
 - TCP: (assume window = 3): 1, 2, 3, 2, 3, 4, 3, 4, 5, 4...
 - Application would detect: 4 out of 10 expected packets arrived
 ⇒ should reduce rate
 - Is receiving 1, 4, 7, 10 instead of 1, 2, 3, 4 really such a big benefit?
 - Or is it just a matter of properly reacting?
 - In RealPlayer and MediaPlayer, TCP can be used for streaming... seems to work well
DCCP usage: incentive considerations

- Benefits from DCCP (perspective of a single application) limited

- Compare them with reasons not to use DCCP
 - programming effort, especially if updating a working application
 - common deployment problems of new protocol with firewalls etc.

- What if dramatically better performance is required to convince app programmers to use it?

- Can be attained using “penalty boxes” - but:
 - requires such boxes to be widely used

 - will only happen if beneficial for ISP: financial loss from unresponsive UDP traffic > financial loss from customers whose UDP application doesn’t work anymore

 - requires many applications to use DCCP

 - chicken-egg problem!
Please tell me I’m wrong!

Thanks! :-}