60th IETF, PMTUD WG:

Path MTU Discovery Using Options
draft-welzl-pmtud-options-01.txt

Michael Welzl
http://www.welzl.at , michael.welzl@uibk.ac.at

Distributed and Parallel Systems Group
Institute of Computer Science
University of Innsbruck, Austria
Motivation

• In the end, (any kind of) PMTUD always loses a packet
 - it would be nice to avoid this

• Also, PMTUD should converge fast

• I am in favor of performance related signaling like ECN and XCP…
 - no “ECN flag” for PMTUD up to now (to avoid loss)
 - no “XCP” for PMTUD up to now (to converge faster)

• Proposal: add such signaling
How it works

• Before doing (no matter which) PMTUD, include “Probe MTU” IP option
 - Initialized with MTU of outgoing link
 - Updated by routers if MTU of incoming or outgoing link is smaller
 - “TTL-Check” field decremented by each “Probe MTU” capable router: used to determine if all routers were involved

• Receiver feeds back result to source
 - either at IP layer (not recommended) or at packetization layer (specified for TCP, SCTP and DCCP, with IPv4 and IPv6)

• Sender reacts to feedback
 - Information complete (from TTL-Check): immediately use new MTU value
 - Information incomplete: use as upper limit (i.e. starting point for RFC1191 PMTUD or to terminate PLPMTUD)
Potential benefits

- No loss, faster convergence
 - if lucky (result = PMTU)
 - really fast convergence if really lucky (all routers support the option)

- Less ICMP packets: less traffic, no risk of lost ICMP packet, reduced processing overhead for routers with small MTU
 - if lucky (result = PMTU)

- May circumvent Black Hole Detection of RFC 1191 PMTUD in some cases
 - if received upper limit from PMTU-Options < value that would cause troubles due to routers that don’t send ”Fragmentation needed”

- Works across tunnels with small effort for endpoints (simply copy the option)
 - if supported by routers within a tunnel

Most beneficial for such routers, which are most beneficial for end points!
Example trace without PMTU-Options

3 normal PCs
100 Mbit/s Ethernet
Linux Kernel version 2.4.26
RedHat 9.0 standard installation
TCP file transfer A→B with netcat

<table>
<thead>
<tr>
<th>IP Size</th>
<th>Sender</th>
<th>Receiver</th>
<th>Packet information</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>A</td>
<td>C</td>
<td>lost</td>
</tr>
<tr>
<td>576</td>
<td>B</td>
<td>A</td>
<td>ICMP Dest. unreachable</td>
</tr>
<tr>
<td>1500</td>
<td>A</td>
<td>C</td>
<td>lost</td>
</tr>
<tr>
<td>576</td>
<td>B</td>
<td>A</td>
<td>ICMP Dest. unreachable</td>
</tr>
<tr>
<td>1111</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
Example trace with PMTU-Options

3 normal PCs
100 Mbit/s Ethernet
Linux Kernel version 2.4.26
RedHat 9.0 standard installation
TCP file transfer A→B with netcat
Kernel patch installed!

<table>
<thead>
<tr>
<th>IP Size</th>
<th>Sender</th>
<th>Receiver</th>
<th>Packet information</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>A</td>
<td>C</td>
<td>pmtu-ask 1500</td>
</tr>
<tr>
<td>60</td>
<td>C</td>
<td>A</td>
<td>pmtu-reply 1111</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>A</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
Problems with IP Options

- Slow Path processing
- Some routers drop these packets

Series of measurement studies carried out with NOP IP Option…
data from 2004 (100 pings of each type per host (alternating), 1 ping / second):

- 12889 different hosts addresses, 14508 different router addresses
- path lengths ranging from approx. 5 to 35 (majority around 15-25)
- 29.48% of hosts did not respond when there was an IP option
- average additional delay of 26.5% of a RTT (options used in forward direction only)

Unknown problems
- processing effort for routers
- delay / drop results when a long series of packets carry options
- Does Slow Path processing lead to reordering?
Deployment considerations

• Clearly not recommendable for each and every e2e TCP connection

• Also, security issues
 - lie about number of routers: prevented by random initial TTL
 - send a MTU value that is too large:
 MAY be prevented by Nonce; not much harm otherwise
 - send a MTU value that is too small: cannot be prevented :-(
 note: IPSec authentication still feasible

• Recommended mainly for “special” scenarios
 - detecting increased PMTU, RTT-robust transport protocols (e.g. UDP)

• Experimental status envisioned

Patch, measurement results, future updates available from http://www.welzl.at/research/projects/ip-options/