Uni Innsbruck Informatik - 1

TCP in Painful Detail

Michael Welzl http://www.welzl.at

DPS NSG Team http://dps.uibk.ac.at/nsg
Institute of Computer Science
University of Innsbruck, Austria

http://www.welzl.at/
http://dps.uibk.ac.at/nsg

Uni Innsbruck Informatik - 2

What TCP does for you (roughly)

o UDP features: multiplexing + protection against corruption
- ports, checksum
e stream-based in-order delivery
- segments are ordered according to sequence numbers
- only consecutive bytes are delivered
 reliability
- missing segments are detected (ACK is missing) and retransmitted
e flow control
- receiver is protected against overload (window based)
e congestion control
- network is protected against overload (window based)
- protocol tries to fill available capacity
e connection handling
- explicit establishment + teardown
o full-duplex communication
- e.g., an ACK can be a data segment at the same time (piggybacking)

TCP History

Slow start + congestion avoidance,

SWS avoidance / Nagle,

Basics | | pT0 calculation, delayed ACK

'

RFC 793 RFC 1122 RFC 1323
09/1981 10/1989 05/1992

| |

|

Uni Innsbruck Informatik - 3

Timestamps,
PAWS,

Window scaling

DSACK

SACK

NCop

:

window

Larger initial NewReno

RFC 2883
07 /2000

RFC 2018 RFC 2988 RFC 3390 RFC 3782
10 /1996 11/2000 10/2002 04/2004

S ‘____l____

RFC 2581 RFC 3042 RFC 3517

loss recovery

/v 04/1999 01/2001 04/2003 < |SACK-based

Full specification of
Slow start,

congestion avoidance,
FR/FR

RFC 3168

09/2001

Limited Transmit

T

ECN

Uni Innsbruck Informatik - 4

TCP Header

source Port Destination Port

cequence Number

fcknowledgement Number

CIE|UILIP|E)2|F
Header
Eegserved [IWJC|EICIS ST LI Window
Length
EIE|IGIEIH|TIN N
Checksum Urgent FPolnter

Dptions (if any)

Data (if any)

e Flags indicate connection setup/teardown, ACK, ..
e |f no data: packet is just an ACK

e Window = advertised window from receiver (flow control)

Uni Innsbruck Informatik - 5

TCP Connection Management

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake) . .
CLOSED N heavy solid line:
= CLOSE/ N\ normal path for a client
LISTEN/~ ! | CLOSE/-
Y
SYN/SYN + ACK .
(Step 2 5 tha Gway handshake) | LISTEN heavy dashed line:
i) K normal path for a server
SYN RST/~ SEND/SYN SYN
RC\;D SYN/SYN + ACK (simultaneous open) Sl Light lines:
: unusual events
i (Data transfer state)
L ACK/- SYN + ACK/ACK ___/
__________________ ~| ESTABLISHED (Step 3 of the 3-way handshake)
CLOSE/FIN J |
CLOSE/FIN L FIN/ACK C]
R TR . onnection
(Active close) (Passive\ close)
(- I ; oo Po-omeoe | setup teardown
i I;IN FINVACK | | CL';)SE i
| 1 \ | SYN
: : : T |
| ACK- ACK/~ | | | CLOSE/FIN|
| | 1 1
I FIN + ACK/ACK ' | i ! | SYN, ACK Aot
! FIN TIME l | LAACS,I | /
i WAIT 2 ERUACHK WAIT i i . i FIN
|] : : |
'"‘"‘""‘““""‘“""“““""“"‘(ﬁ&;aaaf I - ACK ACK
[}
)
ACK/— J \
CLOSED |===mmmmmmmfofeo -
Host 1 Host 2 Host 1 Host 2

(Go back to start)

Uni Innsbruck Informatik - 6

Error Control: Acknowledgement

ACK (“positive” Acknowledgement)

B

ACK meaning: received
s Segment #0 o0.k., now
;i we expect no. 1 next

Purposes:
- sender: throw away copy of segment held for retransmit,
- time-out cancelled
- msg-number can be re-used

TCP counts bytes, not segments; ACK carries “next expected byte” (#+1)

ACKs are cumulative
- ACK n acknowledges all bytes “last one ACKed” thru n-1

ACKs should be delayed

- TCP ACKs are unreliable: dropping one does not cause much harm

- Enough to send only 1 ACK every 2 segments, or at least 1 ACK every 500 ms
(often set to 200 ms)

Uni Innsbruck Informatik - 7

Error Control: Retransmit Timeout (RTO)

e Go-Back-N behavior in response to timeout

e RTO timer value difficult to determine:
- too long = bad in case of msg-loss!
- too short = risk of false alarms!
- General consensus: too short is worse than too long; use conservative estimate

o Calculation: measure RTT (Seg# ... ACK#)

e Original suggestion in RFC 793: Exponentially Weighed Moving Average (EWMA)
- SRTT = (1-a) SRTT + o RTT

- RTO = min(UBOUND, max(LBOUND,
B * SRTT))

e Depending on variation, this RTO may be too small or too large; thus, final
algorithm includes variation (approximated via mean deviation)
- SRTT = (1-a) SRTT + o RTT
- 0=(1-B)*6+p*[SRTT - RTT]
- RTO=SRTT +4*3

Uni Innsbruck Informatik - 8

RTO calculation

e Problem: retransmission ambiguity
- Segment #1 sent, no ACK received - segment #1 retransmitted

- Incoming ACK #2: cannot distinguish whether original or retransmitted segment #1
was ACKed

- Thus, cannot reliably calculate RTO!

e Solution [Karn/Partridge]: ignore RTT values from retransmits

- Problem: RTT calculation especially important when loss occurs; sampling
theorem suggests that RTT samples should be taken more often

e Solution: Timestamps option
- Sender writes current time into packet header (option)
- Receiver reflects value
- At sender, when ACK arrives, RTT = (current time) - (value carried in option)

- Problems: additional header space; facilitates NAT detection

Uni Innsbruck Informatik - 9

Window management

A Sender buffer

/" - \

sent and not ACKed be sent m_ust wait until
acknowledged window moves

e Receiver “grants” credit (receiver window, rwnd)
- sender restricts sent data with window

e Receiver buffer not specified
- i.e. receiver may buffer reordered segments (i.e. with gaps)

Uni Innsbruck Informatik - 10

Silly Window Syndrome (SWS)

Window=6 ___-
« Consider telnet: slow typing = MSS wss e
large header overhead N
- Solution: wait until segment is
filled at the sender 0 2110

(exception: PUSH bit) \
- But what about s <return>?
.] ACK 3, Window =3
e Nagle algorithm: sender waits MSS MSS

until SMSS bytes can be sent 7

r e A
- but 1 small segment /RTT allowed X X\ ¥|3 4 5]678 olld [1

- A TCP implementation must
support disabling Nagle \

e Also, receiver mechanism:

\

slowly reduce rwnd when less than '\fs '\1918 ACK 6, Window = 6
a segment of incoming data until 4 g B /
window boundary reached vavaY.

- Note that delayed ACKs also help: XXXXA X[90

ACK 3 would not have happened Sender Receiver

Uni Innsbruck Informatik - 11

Congestion collapse

Throlughput at zll —+—

ughput at 5 —--x-—-- 7
max. X S I
length >@\§

0 e "Cliff— | |
o 5 dlolla lolloll+/ o/ olld \
m } v send X\\
| > X -
VVVVVV drop \X
%
X
5
X\
A
]] ;
0 10 20 30 40

Time (8)

Uni Innsbruck Informatik - 12

Global congestion collapse in the Internet

Craig Partridge, Research Director for the Internet Research Department at
BBN Technologies:

Bits of the network would fade in and out, but usually only for TCP. You
could ping. You could get a UDP packet through. Telnet and FTP would fail
after a while. And it depended on where you were going (some hosts were
just fine, others flaky) and time of day (I did a lot of work on weekends
in the late 1980s and the network was wonderfully free then).

Around 1pm was bad (I was on the East Coast of the US and you could tell
when those pesky folks on the west Coast decided to start work...).

Another experience was that things broke in unexpected ways - we spent a
lTot of time making sure applications were bullet-proof against failures.

C..)

Finally, I remember being startled when van Jacobson first described how
truly awful network performance was in parts of the Berkeley campus. It
was far worse than I was generally seeing. In some sense, I felt we were
Tucky that the really bad stuff hit just where van was there to see it.

Uni Innsbruck Informatik - 13

Internet congestion control: History

« 1968/69: dawn of the Internet
e 1986: first congestion collapse

« 1988: "Congestion Avoidance and Control" (Jacobson)
Combined congestion/flow control for TCP
(also: variation change to RTO calculation algorithm)

e Goal: stability - in equilibrum, no packet is sent into the network
until an old packet leaves

- ack clocking, “conservation of packets® principle
- made possible through window based stop+go - behaviour

e Superposition of stable systems = stable >
network based on TCP with congestion control = stable

Uni Innsbruck Informatik - 14

TCP Congestion Control: Tahoe

Distinguish:
- flow control: protect receiver against overload
(receiver "grants” a certain amount of data ("receiver window" (rwnd)))
- congestion control: protect network against overload
("congestion window" (cwnd) limits the rate: min(cwnd,rwnd) used!)

Flow/Congestion Control combined in TCP. Two basic algorithms:

(window unit: SMSS = Sender Maximum Segment Size, usually adjusted to Path MTU;
init cwnd<=2 (*SMSS), ssthresh = usually 64k)

Slow Start: for each ack received, increase cwnd by 1
(exponential growth) until cwnd >= ssthresh

Congestion Avoidance: each RTT, increase cwnd by at most one segment
(linear growth - "additive increase”)

Timeout: ssthresh = FlightSize/2 (exponential backoff - "multiplicative
decrease”), cwnd = 1; FlightSize = bytes in flight (may be less than cwnd)

Uni Innsbruck Informatik - 15

Slow start and Congestion Avoidance

e Slow start: 3 RTTs for
3 packets = inefficient

@\
% for very short ACK 1
transfers

e Example: HTTP

ACK 2 Requests
ACK 2

7

O Ores . ACK 3
e Thus, initial window

IW = min(4*MSS,
max(2*MSS, 4380
byte))

Sender . Receiver

Sender . Receiver

Uni Innsbruck Informatik - 16

Fast Retransmit / Fast Recovery (Reno)

Reasoning: slow start = restart; assume that network is empty
But even similar incoming ACKs indicate that packets arrive at the receiver!
Thus, slow start reaction = too conservative.

1.

2.

Upon reception of third duplicate ACK (DupACK): ssthresh = FlightSize/2

Retransmit lost segment (fast retransmit);

cwnd = ssthresh + 3*SMSS

("inflates” cwnd by the number of segments (three) that have left the
network and which the receiver has buffered)

. For each additional DupACK received: cwnd += SMSS

(inflates cwnd to reflect the additional segment that has left the network)

. Transmit a segment, if allowed by the new value of cwnd and rwnd

. Upon reception of ACK that acknowledges new data (“full ACK®):

"deflate” window: cwnd = ssthresh (the value set in step 1)

Uni Innsbruck Informatik - 17

Tahoe vs. Reno

Time (RTT)

Uni Innsbruck Informatik - 18

Background: AIMD

*

¥ 4
L 4
MIMD A
Re Fairness
'/ Line
AN 'l
X Y 4
c Rg
O ¢
L ' e
< ' 5
N .
| -
GJ 1
(/)] I
= Starting Overload
I?oint
Desirable
Efficiency
)

Line

R4 Underload

User 1 Allocation x1

Uni Innsbruck Informatik - 19

One window, multiple dropped segments

1234

FR/FR

-
-
-
-
-
-
-
-

ACK 1

ACK 1

Sender

-
-
-
-
-
-
-
-
-
-
-
-

Receiver

Sender cannot detect loss of
multiple segments from a single
window

Insufficient information in DupACKs

NewReno:

stay in FR/FR when partial ACK
arrives after DupACKs

retransmit single segment
only full ACK ends process

Important to obtain enough ACKs to
avoid timeout

Limited transmit: also send new
segment for first two DupACKs

Uni Innsbruck Informatik - 20

Selective ACKnowledgements (SACK)

Kind = & Length

Left Edge of l1lst Block

Eight Edge of 1=t BElock

Left Edge of nth Block

Eight Edge of nth Block

Example on previous slide: send ACK 1, SACK 3, SACK 5 in response to segment #4

Better sender reaction possible
- Reno and NewReno can only retransmit a single segment per window
- SACK can retransmit more (RFC 3517 - maintain scoreboard, pipe variable)
- Particularly advantageous when window is large (long fat pipes)

but: requires receiver code change

Extension: DSACK informs the sender of duplicate arrivals

Uni Innsbruck Informatik - 21

Spurious timeouts

« Common occurrence in wireless

scenarios (handover): sudden 112/3 45 i E::;?Xssmke
delay spike
1)2/[3]14/ 5/
 Can lead to timeout —
- slow start 1/2]3 45
- But: underlying assumption:
“pipe empty* is wrong! LA Bl =
(“spurious timeout®) 1/12/13)4 19
- Old incoming ACK after timeout RN
should be used to undo the error [1/12/ 3] 4}/5]
e Several methods proposed Tmeout
Examples: meod
- Eifel Algorithm: use timestamps | 1| 1 5

option to check: timestamp in
ACK < time of timeout?
- DSACK: duplicate arrived E
- F-RTO: check for ACKs that
shouldn't arrive after Slow Start Sender Receiver

ACK 2

Uni Innsbruck Informatik - 22
Appropriate Byte Counting

e Increasing in Congestion Avoidance mode: common implementation
(e.g. Jan’05 FreeBSD code): cwnd += SMSS*SMSS/cwnd for every ACK
(same as cwnd += 1/cwnd if we count segments)

- Problem: e.g.cwnd =2: 2 +1/2 + 1/ (2+1/2)) = 2+0.5+0.4 = 2.9
thus, cannot send a new packet after 1 RTT

- Worse with delayed ACKs (cwnd = 2.5)

- Even worse with ACKs for less than 1 segment (consider 1000 1-byte ACKs)
- too aggressive!

e Solution: Appropriate Byte Counting (ABC)
- Maintain bytes_acked variable; send segment when threshold exceeded
- Works in Congestion Avoidance; but what about Slow Start?
« Here, ABC + delayed ACKs means that the rate increases in 2*SMSS steps

o If a series of ACKs are dropped, this could be a significant burst (“micro-
burstiness®); thus, limit of 2*SMSS per ACK recommended

Uni Innsbruck Informatik - 23

Limited Slow Start and cwnd Validation

e Slow start problems:

- initial ssthresh = constant, not related to real network
this is especially severe when cwnd and ssthresh are very large

e Proposals to initially adjust ssthresh failed: must be quick and precise
- Assume: cwnd and ssthresh are large, and avail.bw. = current window + 1 SMSS/RTT ?
e Next updates (cwnd++ for every ACK) will cause many packet drops

e Solution: Limited Slow Start
- cwnd <= max_ssthresh: normal operation; recommend. max_ssthresh=100 SMSS
- else K = int(cwnd/(0.5*max_ssthresh), cwnd += int(MSS/K)

- More conservative than Slow Start:
for a while cwnd+=MSS/2, then cwnd+=MSS/3, etc.

 Cwnd validation
- What if sender stops, or does not send as much as it could?
e maintain cwnd = wrong if break is long (not related to real network anymore)
e reset = too conservative if break is short

« Solution: slowly decay TCP parameters - cwnd /= 2 every RTT,
ssthresh = between previous and new cwnd

Uni Innsbruck Informatik - 24

Maintaining congestion state

e« TCP Control Block (TCB): information such as RTO, scoreboard, cwnd, ..

e Related to network path, yet separately stored per TCP connection
- Compare: layering problem of PMTU storage

« TCB interdependence: affects initialization phase

- Temporal sharing: learn from previous connection
(e.g. for consecutive HTTP requests)

- Ensemble sharing: learn from existing connections
here, some information should change -

e.g. cwnd should be cwnd/n, Application

n = number of connections; but less ¢ Tl

aggressive than "old” implementation Ss.

UbP "~ a/Al¢ - 4Scheduler
: A
 Congestion Manager TCP€------ "T Conasson

_ q 3 g g b -.}

One ent.lty in the OS maintains all the TCP controller
- congestion control related state
- Used by TCP's and UDP based applications A 4 P

- Hard to implement, not really used

Uni Innsbruck Informatik - 25

Explicit Congestion Notification (ECN)

Active Queue Management
- monitor queue, do not just drop upon overflow = more intelligent decisions
- maintain low average queue length, alleviate phase effects, enforce fairness

« Explicit Congestion Notification (ECN)
- Instead of dropping, set a bit; reduced loss = major benefit!

e Receiver informs sender about bit; sender behaves as if a packet was dropped
= actual communication between end nodes and the network

e Typical incentives:
- sender = server; efficiently use connection, fairly distribute bandwidth
e use ECN as it was designed
- receiver = client; goal = high throughput, does not care about others
e ignore ECN flag, do not inform sender about it

e Need to make it impossible for receiver to lie about ECN flag when it was set
- Solution: nonce = random number from sender, deleted by router when setting ECN
- Sender believes ,,no congestion® iff correct nonce is sent back

Uni Innsbruck Informatik - 26

ECN in action

ACKs
— N N oy,
- ~
- ~
- ~
Sender - ~ Receiver
~
Congestion ~

@ Send packet with | ECT =1, so don’t drop @ SetECE=11in

ECT=1,CE=0, update: CE=1 subsequent ACKs

nonce = random v nonce =0 evenif CE=0

Reduce cwnd, | . o o o o o o o o o o o o = — — Only set ECE=1

set CWR =1 -» ¢

in ACKs again

Data packets : when CE=1

« Nonce provided by bit combination:
- ECT(0): ECT=1, CE=0
- ECT(1): ECT=0, CE=1

e Nonce usage specification still experimental

Uni Innsbruck Informatik - 27

Fighting TCP SYN attacks

« TCP SYN attack
- DoS attack - flood a server until it‘s down, ideally with packets that cause work
Note: per-flow state not scalable
TCP needs per-flow state (connection state, address, port numbers, ..)
1 SYN packet: search through existing connections + allocate memory
TCP SYN attack exploits TCP scalability problem!

e Solution
- Sequence number negotiated at connection setup
- ldea:
e do not maintain state after SYN at server
» encode cipher in sequence number from server to client
» Client must reflect it = check integrity; if okay, generate state from ACK
Only requires changes at the server
Not specified in RFC - no specification change needed
See http://cr.yp.to/syncookies.html for details (how to activate in Linux, ..)

Uni Innsbruck Informatik - 28

Known issues with TCP

Uni Innsbruck Informatik - 29

Current IETF concern: TCP security

e Historic viewpoint: can an attacker blindly disturb a TCP connection?
- Hardly: would have to know 4-tuple (src/dst addr, src/dst port and seqno)

Thus, no countermeasures in TCP

e Assumption no longer correct!
[Paul Watson: "Slipping in the Window" (cansecwest/core04 conference) |

Window size larger for high speed links (RFC 1323) = larger number of working seqnos

Some applications use long lived connections; e.g. H.323, BGP (major concern!)
— longer time available for attacker

Also, such long lived connections may have predictable IP addresses / ports
= better chances of guessing correct 4-tuple

RST attack
e cause connection to be torn down; works because any RST in current window accepted
e Mitigation: only accept RST with next expected segno
SYN attack
« in old spec, SYN with acceptable seqno is answered with RST
e Mitigation: answer with ACK, which is answered with RST (where new rule applies)
DATA attack
» can lead to "ACK war” (sender / receiver negotiation fails) or corruption
» Mitigation: always check range of ACK

Uni Innsbruck Informatik - 30

TCP security /2

e Note: BGP problem long known; awareness issue!
- RFC 2385 (Proposed Standard, 1998) specifies a MD5 message digest for TCP
- |IPSec authentication can also solve the problem
- So can authentication based on Timestamps option

TCP connection

e Recent discussion: what about ICMP? 4@}

Host A
- Messages can indicate reachability 192.168.0.1

problems, but also source quench and MTU
(still beneficial for convergence with new
PMTUD, but a security problem) 200.200.0.1

Internet 10.0.0.1

Router Z

- Many pro's and con's to ICMP processing 170.210.17.1

170.210.17.5

- Consider figure: should router Z accept @}
ICMP packets from 170.210.17.1 which tell e
Host A that Host B is unreachable? il

Source: http://www.gont.com.ar/papers/icmp-errors/

Uni Innsbruck Informatik - 31

Some reasons for TCP CC. stability

“Congestion Avoidance and Control®, Van Jacobson, SIGCOMM‘88:

e Exponential backoff:
“For a transport endpoint embedded in a network of unknown
topology and with an unknown, unknowable and constantly changing
population of competing conversations, only one scheme has any
hope of working - exponential backoff - but a proof of this is beyond
the scope of this paper.*

o Conservation of packets:
“The physics of flow predicts that systems with this property should
be robust in the face of congestion.*

o Additive Increase, Multiplicative Decrease:
Not explicitely cited as a stability reason in the paper!

- ...but in 1000°‘s of other papers!

Uni Innsbruck Informatik - 32

“Proofs™ of TCP stability

e AIMD:
Chiu/Jain: diagram + algebraic proof of homogeneous RTT case

o steady-state TCP model: window size ~ 1/sqrt(p)
(p = packet loss)

e Johari/Tan, Massoulie, ..:
- local stability, neglect details of TCP behaviour (fluid flow model, ..)

- assumption:
“queueing delays will eventually become small relative to propagation delays®

e Steven Low:

- Duality model (based on utility function / F. Kelly, ..):
Stability depends on delay, capacity, load and AQM

Uni Innsbruck Informatik - 33

How Stable is AIMD / async. RTT?

USER 2
1.0000 .
0.9500 — -

0.9000 0 o 5
0.8500 Simple simulation

0.8000) (no queues, ..)
0.7500 *RTT: 7 vs.2
0.7000 N e - AI=0.1, MD=0.5
0.6500 — | .) .

AL, o - Simul. time=175

N

0.6000 ;
0.5500 Al . &
0.5000 E

0.4500 R L

0.4000 T '

0.3500 Ihitees %«
/ \I.~£== il 2 K
0.3000 7 b ’!: il
0.2500 o i sl HEN)
0.2000 -

0.1500 o it

0.1000 =N
0.0500 — HEH =l

0.0000 ’ -
-0.0500

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 User 1

Uni Innsbruck Informatik - 34

Is AIMD distorted in TCP?

TCP 2

10.0000
9.5000
9.0000
8.5000
8.0000
7.5000
7.0000
6.5000
6.0000
5.5000
5.0000
4.5000
4.0000
3.5000
3.0000
2.5000
2.0000
1.5000
1.0000

N

2.0000

4.0000

6.0000

8.0000 10.0000 12.0000 14.0000

* ns-2 simulator
L * TCP Tahoe
- equal RTT
* 1 bottleneck link

TCP 1

Uni Innsbruck Informatik - 35

TCP vs. UDP: a simple simulation example

' nam: C:/5teve/ns_nam_SimSystem/Simulator/Scripts/TM2/Ue2/out.nam
File Wiews Analpsiz C/Stevedns_nam_Si mSystem/Si mulstor Script=/TM2/Ua2/out nam
44 | - | | | | | | (4] | S 0.000000 Step: 2.0ms

r T T r =

ED

1T

o

(=]

+f Led—

T g HE
Augto layout: Ca ID.15 cr ID.'IS terations I'ID Recalc re-lzyout | reset |

-

.

I |

iaﬁtart”J @Explorer-... I MicrosoflE...l ﬁ'IEE. Stlato...l NAM | iﬂnam Eonsole”ianam: B |J Office @ 5 E ””f};lﬂ#(ﬂ%&‘) 18:36

Uni Innsbruck Informatik - 36

It doesn‘t look good

10 tcp -1 cbr - drop tail 100 tcp -1 cbr - drop tail
1400000
1400000
1200000 |
L, 1200000 »VWMWWV\M\
1000000 - 1000000 -
800000 800000 [M\,JM/\W\,JW
600000 - 600000 -
400000 400000 -
200000 200000 WVWWA\W\M
0 0
-200000 -200000

e For more details, see:
Promoting the Use of End-to-End Congestion Control in the Internet.
Floyd, S., and Fall, K..
IEEE/ACM Transactions on Networking, August 1999.

Uni Innsbruck Informatik - 37

TCP-friendliness

« TCP dominant - therefore, Internet definition of fairness: TCP-friendliness
"A flow is TCP-compatible (TCP-friendly) if, in steady state, it uses no more
bandwidth than a conformant TCP running under comparable conditions."

e But...

- TCP regularly increases the queue length and causes loss
— detect congestion when it is already (ECN: almost) too late!

» possible to have more throughput with smaller queues and less loss
... but: exceed rate of TCP under similar conditions = not TCP-friendly!

What if | send more than TCP in the absence of competing TCP‘s?
e can such a mechanism exist?
e yes! TCP itself, with max. window size = bandwidth * RTT
e Does this mean that TCP is not TCP-friendly?
Details missing from the definition:
e parameters + version of "conformant TCP"
 duration! short TCP flows are different than long ones
TCP-friendliness = compatibility of new mechanisms with old mechanism
» there was research since the 80°s! e.g. new knowledge about network measurements
TCP rate depends on RTT - how does this relate to intuitive "fairness” notion?

Uni Innsbruck Informatik - 38
TCP with High Speed links

e TCP over “long fat pipes”: large bandwidth*delay product

- long time to reach equilibrium, MD = problematic!
- From RFC 3649 (HighSpeed RFC, Experimental):

For example, for a Standard TCP connection with 1500-byte packets and a 100 ms
round-trip time, achieving a steady-state throughput of 10 Gbps would require
an average congestion window of 83,333 segments, and a packet drop rate of at
most one congestion event every 5,000,000,000 packets (or equivalently, at most
one congestion event every 1 2/3 hours). This is widely acknowledged as an
unrealistic constraint.

bandwidth 4 2t
Theoretically, - N
utilization A / /
independent of bandwidth "
capacity —— / Ve -2¢
//l//l//]//l c
But: longer

e R j

time time

convergence time

Uni Innsbruck Informatik - 39

TCP with asymmetric routing

e TCP in asymmetric networks
- incoming throughput (high capacity link) can be limited by rate of outgoing
ACKs (ACK compaction, ACK congestion)
- Mitigation:
e Delayed ACKs
o ACK suppression (selectively drop ACKs)
e TCP header compression

- triangular routing with Mobile IP(v4) and FA-Care-of-address can lead to
unnecessarily large RTT (and hence large RTT fluctuations)

"normal" operation

V1 sa|,t1 ng Network

.
a
ay
Ty,
L

Uni Innsbruck Informatik - 40

TCP in noisy environments / over satellite

e TCP over noisy links: problems with “"packet loss = congestion”

- Usually wireless links, where delay fluctuations from link layer ARQ and
handover are also issues (mitigation: spurious timeout detection schemes)

« Satellites combine several problems
- Long delay
- High capacity
- Wireless (but usually not noisy (for TCP) because of link layer FEC)

- Can be asymmetric (e.g. direct satellite downlink, 56k modem uplink)

Receiver

Performance
Enhancing
Proxy (PEP)

Uni Innsbruck Informatik - 41

References

« Michael Welzl, "Network Congestion WWILEY
Control: Managing Internet Traffic", John NetWOI'k_
Wiley & Sons, Ltd., August 2005, ISBN: Congestion

047002528X

Control

e M. Hassan and R. Jain, "High Performance
TCP/IP Networking: Concepts, Issues, and
Solutions”, Prentice-Hall, 2003,
ISBN:0130646342

e M. Duke, R. Braden, W. Eddy, E. Blanton: "A
Roadmap for TCP Specification Documents”,
Internet-draft draft-ietf-tcpm-tcp-roadmap-
06.txt, http://www.ietf.org/internet-
drafts/draft-ietf-tcpm-tcp-roadmap-06.txt
(in RFC Editor Queue)

Uni Innsbruck Informatik - 42

Thank you!

Questions?

	TCP in Painful Detail
	What TCP does for you (roughly)
	TCP History
	TCP Header
	TCP Connection Management
	Error Control: Acknowledgement
	Error Control: Retransmit Timeout (RTO)
	RTO calculation
	Window management
	Silly Window Syndrome (SWS)
	Congestion collapse
	Global congestion collapse in the Internet
	Internet congestion control: History
	TCP Congestion Control: Tahoe
	Slow start and Congestion Avoidance
	Fast Retransmit / Fast Recovery (Reno)
	Tahoe vs. Reno
	Background: AIMD
	One window, multiple dropped segments
	Selective ACKnowledgements (SACK)
	Spurious timeouts
	Appropriate Byte Counting
	Limited Slow Start and cwnd Validation
	Maintaining congestion state
	Explicit Congestion Notification (ECN)
	ECN in action
	Fighting TCP SYN attacks
	Known issues with TCP
	Current IETF concern: TCP security
	TCP security /2
	Some reasons for TCP CC. stability
	“Proofs“ of TCP stability
	How Stable is AIMD / async. RTT?
	Is AIMD distorted in TCP?
	TCP vs. UDP: a simple simulation example
	It doesn‘t look good
	TCP-friendliness
	TCP with High Speed links
	TCP with asymmetric routing
	TCP in noisy environments / over satellite
	References
	Thank you!

