Outline

RTO Restart

Updates to the draft

Algorithmic Changes

Experimental Results and Implementation
RTO Restart

- As the RTO timer is restarted on an incoming ACK [RFC6298, RFC4960], the effective RTO often becomes $RTO = RTO + RTT[+delACK]$.

- RTO restart adjusts the RTO so that retransmissions are performed after exactly RTO seconds.

- The modified restart is only applied when FR can not be used.
Updates to the draft

- Changed the algorithm to allow RTOR when there is unsent data available, but the cwnd does not allow transmission.
 - change discussed at IETF 90

- Changed the algorithm to not trigger if "RTO - T_earliest" \(\leq 0 \), to avoid that ACKs to previous retransmissions trigger premature timeouts.
 - problem discussed on tcpm mailing list

- Made minor adjustments throughout the document to adjust for the algorithmic change.

- Improved the wording throughout the document.
Algorithmic Changes

When an ACK is received that acknowledges new data:

1. Set $T_{\text{earliest}} = 0$.

2. If the total number of outstanding and previously unsent segments is less than an RTOR threshold ($rrthresh$), set T_{earliest} to the time elapsed since the earliest outstanding segment was sent.

3. Restart the retransmission timer so that it will expire after (for the current value of RTO):

 a) $RTO - T_{\text{earliest}}$, if $RTO - T_{\text{earliest}}$ is > 0.

 b) RTO, otherwise.
Experimental Results and Implementation

- Experimental results on the performance of RTOR presented at last meeting, complemented with info on spurious retransmissions here

 - Fully controlled – fixed-size flows with tail loss: no spurious retransmissions

 - Realistic loss – trace-driven background traffic: give the numbers for RTOR and baseline

 * Baseline: \(2.2 \times 10^{-4}\)

 * RTOR: \(2.9 \times 10^{-4}\)
RTO Restart

– Web pages – web page downloads with correlated loss patterns (fraction spurious):

* Baseline: 4.8×10^{-5}

* RTOR: 5.9×10^{-5}

• Implementation has been updated with the latest algorithm changes

• For detailed information and code, see http://riteproject.eu
Questions?