
Leopold-Franzens-University
Innsbruck

Institute of Computer Science

Distributed and Parallel Systems

PTP Implementation
in SNMP
Bachelor Thesis

supervised by:

Dr. Michael Welzl

Authors:

Robert Binna

Eva Zangerle

Innsbruck, 7th March 2006

Abstract

This bachelor thesis deals with the implementation of the Performance

Transparency Protocol (PTP) using the Simple Network Management

Protocol (SNMP).

i

Acknowledgements

Our biggest thanks goes to Michael Welzl, who offered this bachelor thesis. He

always was very supportive and ready to answer all our questions. The discussions

with him contributed some good ideas to our final result and were very helpful

throughout the implementation process.

We also would like to thank Ben Lavender for the help with the interface descrip-

tion and Martin Rabanser for the original PTP implementation.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Aims of Implementation . 1

1.2 Performance Transparency Protocol 1

1.3 Simple Network Management Protocol 2

1.4 Management Information Base . 3

2 Implementation 5

2.1 Design Decisions . 5

2.1.1 Reasons for Choosing C++ 5

2.1.2 Callback vs. Threading . 5

2.2 Traceroute . 6

2.3 Bandwidth Calculation . 7

2.4 Class Diagram . 9

2.5 Message Sequence Chart . 10

2.6 Daemon . 11

2.6.1 Message Sequence Charts 12

2.7 Programming Environment . 15

2.7.1 Net-SNMP . 15

2.7.2 Boost C++ Libraries . 15

2.7.3 SCons . 15

2.7.4 ZThread . 15

2.8 Exception Handling . 16

2.9 Problems . 16

iii

3 Traffic Analysis 17

3.1 Traceroute . 19

3.2 Bandwidth Retrieval . 20

4 Installation 21

4.1 Installation of Net-SNMP . 21

4.2 Required Libraries and Tools . 22

4.3 Installation of PTP . 22

4.4 Daemon . 23

4.5 Minimal System Requirements . 23

4.6 Building RPMs . 23

5 Interface Description 25

5.1 Interface . 25

5.2 Implementation . 25

5.3 Methods . 26

5.3.1 startBandwidthCalculation 26

5.3.2 registerAlgorithm . 27

5.4 Examples . 27

5.5 Class Diagram . 30

List of figures 31

Bibliography 31

iv

Chapter 1

Introduction

1.1 Aims of Implementation

The main aim of this bachelor thesis was the implementation of the functionality

of the Performance Transparency Protocol (PTP, Chapter 1.2) using the Simple

Network Management Protocol (SNMP, Chapter 1.3).

This functionality is needed because it enables users to retrieve bandwidth infor-

mation using PTP from a network without having to install PTP on every router

in the network. The only prerequisite is that each host along the route has an

SNMPv3 client installed. This implementation makes it possible to use PTP in

networks without having to apply special patches to the router firmware.

The bandwidth information retrieved via the Performance Transparency Protocol

can be used for various applications. One of them is a congestion control mecha-

nism like CADPC (Congestion Avoidance with Distributed Proportional Control,

[1]). Such an application should easily be able to retrieve the requested bandwidth

information from PTP and should also be able to set certain parameters in order

to retrieve relevant and reasonable data.

1.2 Performance Transparency Protocol

The Performance Transparency Protocol was developed by Michael Welzl. Using

PTP, a network entity can efficiently request performance parameters from the

1

CHAPTER 1. INTRODUCTION

network. These parameters are:

• available bandwidth

• bottleneck bandwidth (link with worst performance)

• bit error ratio (number of incorrectly received bits)

• path mtu (maximum transfer unit - largest possible packets that will not be

fragmented)

PTP packets sent from the source to the destination are updated by the interme-

diate routers along the path. This is accomplished by using the Forward Packet

Stamping Mode. This means that the routers either just add their information or

they compare it with the information already contained in the packet, in which

case the router simply overwrites the information in the packet if its information

is ”worse” (according to the definition in the PTP specification). The packets

are either directly sent back to the source or to the next router along the path.

Finally the receiver builds a table of router entries and calculates the requested

information, which is then sent back to the sender.

1.3 Simple Network Management Protocol

SNMP is a protocol used for the communication between network entities. These

entities are either management stations (e.g. consoles) or managed objects (e.g.

routers or gateways). SNMP is used to retrieve or manipulate the entries of MIBs

(Management Information Bases, see Chapter 1.4).

All the components controlled by a management console need a SNMP agent - a

module that is able to communicate with the SNMP manager.

With SNMP, all the parameters regarding network attached devices can be mon-

itored. Doing so, the current state of a network is monitored. SNMP works with

both IPv4 and IPv6.

SNMP can be used for:

• Retrieving information from a network attached device, which has to be

SNMP capable.

2

CHAPTER 1. INTRODUCTION

• Manipulating configuration information on a network attached device, which

has to be SNMP capable.

• Retrieving a fixed set of information from a SNMP capable device, which is

attached to the network.

• Converting and displaying MIB contents and its structure.

1.4 Management Information Base

A MIB is a virtual database consisting of a set of objects. MIBs are used to

manage devices in a communications network. The MIB database is structured

hierarchically and the different entities within the hierarchy are adressed through

object identifiers (OIDs). These entities can be retrieved or modified by SNMP

(Simple Network Management Protocol (see Chapter 1.3).

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Implementation

2.1 Design Decisions

2.1.1 Reasons for Choosing C++

The first implementation attempt was in pure C, but it soon became clear that a

fully fledged object oriented language was needed to fulfill all the requirements to

implement an interface that is easy to use and maintain. Another reason was that

it should be quite easy to port the library to other operating systems. Due to the

object oriented design the implementation of language bindings is a minor effort.

2.1.2 Callback vs. Threading

The most difficult decision was to choose whether to use callbacks or threads to

collect the requested data. The first suggested approach was to code it in the same

fashion as the original PTP implementation. In this case it was solved through a

combination of multithreading and polling the bandwidth data. For us the most

obvious thing to do was to combine the best of both - a scheduled request for

the bandwidth data that would invoke a callback function each time the data gets

updated. So the user only has to take care about when to start and stop the

measurements.

5

CHAPTER 2. IMPLEMENTATION

2.2 Traceroute

Traceroute determines the IP adresses of all routers along the path to the desti-

nation. For each destination adress, a new thread is created.

To retrieve the IP adresses of the routers along the path to the destination router,

UDP (User Datagram Protocol) and ICMP (Internet Control Message Protocol)

messages are used.

UDP packages contain a ”TTL” - variable (Time To Live). This variable de-

scribes the number of hops the packet can take on the network before being

discarded. Every time a router receives a UDP packet, the TTL counter gets

decremented by one. As soon as the TTL counter reaches zero, the router returns

a ICMP TIMXCEED error message to the dispatcher of the packet. This packet

contains the IP of the router which originally sent the error message, which can

easily be extracted.

This behaviour can be used to implement a traceroute application. By setting the

TTL to one, the IP of the first router along the path can be obtained. Increasing

the TTL by one until the destination host is reached finally leads to the complete

reconstruction of the path of the packets.

Host1
 Host2

emptyUDPMsg
 [
TTL
 =1
]

ICMP
 _
TIMXCEED

Host3

emptyUDPMsg
 [
TTL
 =2
]

ICMP
 _
TIMXCEED

Figure 2.1: Traceroute IP Detection

6

CHAPTER 2. IMPLEMENTATION

This implementation of traceroute functionality is threadsafe. For every destina-

tion adress a new traceroute thread is created. Threading is done by the ZThreads

multithreading and synchronization library [6]. To ensure threadsafety, several

Mutex constructs of this library are used.

2.3 Bandwidth Calculation

The first step in the bandwidth calculation process is the execution of a traceroute

call. The resulting IP adresses of the routers along the path are stored in a vector.

After having detected the path, the bandwidth of each router has to be detected.

Therefore the following connection parameters are retrieved from every router via

a SNMP call.

• ifSpeed - nominal bandwidth in bits per second.

• ifInOctets - total number of octets received.

• hrSystemDate - current router date and time.

The following formula describes the calculation of the bandwidth of a host. ”in-

Octets” is the number of bytes received on the current SNMP request. ”previ-

ousInOctets” stands for the number of bytes received on the previous request.

Analogously ”check” stands for the date and time as of the last SNMP request

and ”previousCheck” stands for the date and time of the previous request.

BW (bits/sec) = 8 ∗ 1.000.000 ∗
inOctets − previousInOctets

check − previousCheck

The calculated bandwidth has to be multiplied with a factor of 1.000.000, because

the time unit used by the hrSystemTime timestamp is microseconds and seconds

are needed. Additionally the bandwidth has to be multiplied with a factor of 8,

because the bandwidth should be stated in bits per second.

Due to the fact that the octets counter may suffer an overflow, another case has to

be considered. Namely if inOctets is smaller than previousInOctets, the formula

for the bandwidth has to be as follows.

7

CHAPTER 2. IMPLEMENTATION

BW (bits/sec) = 8 ∗ 1.000.000 ∗
2n − previousInOctets + InOctets

check − previousCheck

The above formula is implemented by subtracting previousInOctets from a 32 bit

long 0 and then adding InOctets.

Obviously the first pass of requests does not lead to a result, because there is no

information about a previous request available to calculate the bandwith from.

Therefore, a ”Not enough Information to calculate bandwidth” - exception is

thrown.

If the route changes during the bandwidth calculation (IP address of one or more

routers along the path changes), the whole bandwidth detection is started all over

again. Therefore a new traceroute is executed. Based upon the new traceroute

path the bandwidths of all routers along the path are retrieved again. Once the

second pass of retrieving bandwidth information is completed, the new and up-

dated bandwidth gets returned. A timeout during a traceroute call or during a

SNMP request is handled exactly the same way.

8

CHAPTER 2. IMPLEMENTATION

2.4 Class Diagram

UDPSocket

UDPSocket
 (unsigned
 int
 p_
portNumber
)

sendEmptyPackage
 (
const
 string & p_
 destinationIP
 , unsigned

int
 p_
ttl
, unsigned
 int
 p_
portNumber
 = 0): void

TraceElement

TraceElement
 ()

TraceElement
 (boost::time_duration p_duration, string p_address)

getAdress
 ()
 const
 : string

getDuration
 ()
 const
 : boost::time_duration

TraceElement
 (boost::time_duration p_duration, string p_address)

static
 fromString
 (
const
 string & input):
 TraceElement

toString
 (): string

ICMPMessage

ICMPMessage
 (boost::shared_
 ptr
<char> &

 p_buffer,
 int
 p_size)

getType
 ()
 const
 : unsigned
 int

getOriginalSrcPort
 ()
 const
 : unsigned
 int

getOriginalDstPort
 ()
 const
 : unsigned
 int

getOriginalSrcIP
 ()
 const
 : string

getOriginalDstIP
 ()
 const
 : string

getSrcIP
 ()
 const
 : string

getDstIP
 ()
 const
 : string

ICMPSocket

ICMPSocket
 ()

ICMPMessage
 getNextMsg
 ()

SocketHandler

SocketHandler
 (
TProtocolType
 p_type)

SocketHandler
 (
int
 fd
)

ICMPSocketWorker

ICMPSocketWorker
 ()

ICMPSocketWorker
 (
const
 ICMPSocketWorker
 & p_
 toCopy
)

getNextMsg
 (
std
::string & p_
 targetAddress
 ,
int
 p_tries,unsigned long

p_
timeout
):
 ICMPMessage

<<
BandwidthIntervallAlgorithm
 >>

virtual
 getInterval
 (boost:
 uint64
 rtt
):

boost:
uint64

BandwidthRetriever

startBandwidthCalculation
 (
const
 boost::shared_
 ptr
<
BandwidthReceiver
 > & p_
 receiverInterface
): void

static
 registerAlgorithm
 (
std
::string, boost::shared_
 ptr
<
BandwidthIntervalAlgorithm
 > algorithm): void

<<
BandwidthReceiverInterface
 >>

setBandwidth
 (boost:
 uint64
 bandwidth): void

getHost
 (): string

virtual
 getAlgorithmIdentifier
 ()
 const
 : string

1

*

Host

Host(
const
 string& p_
 ipAddress
 ,
 const
 string& p_
 username
 ,
 const
 string& p_password)

unsigned long
 getBandwidth
 ()

getTraceroute
 (): vector<
 TraceElement
 >

static
 getTraceroute
 (
const
 string & p_
 ipAddress
): vector<
 TraceElement
 >

getAdress
 (): string

MIBEntry

MibEntry
 (
const
 s
t
ring& p_key,
 const
 string& p_type,
 const
 string& p_value)

getKey
(): string

getType
 (): string

getValue
 (): string

SnmpRequest

getValues
 (): map<string,
 MibEntry
 >

SnmpSession

SnmpSession
 (
S
tring p_
 username
 ,
S
tring p_
 passphrase
 ,
S
tring p_
 hostname
)

getValues
 (set<string> p_
 oids
)
 const
 : map<string,
 MibEntry
 >

Figure 2.2: Class Diagram

9

CHAPTER 2. IMPLEMENTATION

2.5 Message Sequence Chart

This message sequence chart shows the execution of a traceroute call and the

SNMP requests for a sample path with four hosts included. Host1 sends empty

UDP packages to the hosts and receives ICMP Messages containing the other

host’s IP adresses. In the next step, SNMP requests are sent to the hosts along

the path and the requested SNMP values are returned.

Host1
 Host2
 Host3
 Host4

emptyUDPMsg

emptyUDPMsg

emptyUDPMsg

ICMPMsg

ICMPMsg

ICMPMsg

SNMPRequest

SNMPValues

SNMPRequest

SNMPValues

SNMPRequest

SNMPValues

SN
M

P

 S

es
si

on

Figure 2.3: Message Sequence Chart

10

CHAPTER 2. IMPLEMENTATION

2.6 Daemon

The whole implementation of the PTP functionality is wrapped into three dae-

mons. The main reason for choosing the implementation of a daemon instead of

a library was the fact that a daemon implementation makes it possible that only

ICMP socket is needed to retrieve the ICMP messages and distinguish between

the different messages. Furthermore permissions were needed for the execution of

the traceroute.

The implementation consisting of three separate daemons and therefore three sep-

arate processes has various advantages. The first advantage is modularity. A part

of the software could be changed without affecting the other parts. Another advan-

tage is the configurability of the whole system such that different implementations

could be exchanged during runtime. Even though there are three processes, in-

stalling the package containing the three daemons is as easy as the installation of

just one daemon. According to that, also the dependencies among the processes

are captured within the packaging system.

The implemented daemons are:

• traceroute daemon - covers the traceroute functionality

• bandwidth algorithm daemon - contains the bandwidth interval algorithm

• bandwidth retriever daemon - comprises the actual bandwidth retrieval

The interprocess communication between these three daemons happens via Unix

Domain Sockets. Figure 2.4 is a schematic diagram of the daemons. The protocol

family ”PF UNIX” was used for the interprocess communication. Unix Domain

Sockets are named with Unix paths (e.g. /tmp/socket name). More information

about Unix Domain Sockets can be found at the Netzmafia Website [8].

To be able to exchange complex datatypes between the daemons, these objects

were serialized. This was done by using the Boost Serialization Library [4]. Also

the exceptions were serialized in order to be able to inform the client about any

occured exception.

11

CHAPTER 2. IMPLEMENTATION

Bandwidth Retriever Client

Bandwidth Algorithm Daemon

Traceroute
 Daemon

Bandwidth
 Daemon
Bandwidth Algorithm Client

Traceroute

Client

Bandwidth

Retrieval

Daemon

Figure 2.4: Daemon architecture

2.6.1 Message Sequence Charts

The following two message sequence charts show how the three daemons and the

client interact. The first message sequence chart shows the interaction without the

occurrence of any error. The second message sequence chart shows the interaction

when the client does not respond any more. The retriever sends the bandwidth

twice and if the client does not respond with an acknowledgement message, the

whole bandwidth retrieval process is stopped.

12

CHAPTER 2. IMPLEMENTATION

client
 retriever
 algorithm
 traceroute

get_bandwidth

get_
 traceroute

get_interval

error

get_
 traceroute

get_interval

bandwidth

get_
 traceroute

get_interval

bandwidth

Figure 2.5: Communication between daemons without any error

13

CHAPTER 2. IMPLEMENTATION

client
 retriever
 algorithm
 traceroute

get_bandwidth

get_
 traceroute

get_interval

error

get_
 traceroute

get_interval

bandwidth

get_
 traceroute

get_interval

bandwidth

ClientTerminatedException

Figure 2.6: Communication between daemons, no response from client

14

CHAPTER 2. IMPLEMENTATION

2.7 Programming Environment

2.7.1 Net-SNMP

The Net-SNMP suite contains libraries and tools needed to use the Simple Network

Management Protocol. This suite provides command line applications to retrieve

information from a certain Management Information Base via single or multiple

requests.

Additional information about Net-SNMP can be found at the official website [3].

2.7.2 Boost C++ Libraries

Boost is a free collection of libraries for C++. It e.g. provides shared pointers and

several functions for date and time handling, which were used for the implementa-

tion. Also the serialization library of Boost was used. A part of the Boost library

will be included in the C++ Standard.

Further information about Boost can be found at the official website [4].

2.7.3 SCons

SCons is a software construction tool used for this implementation. It is an alterna-

tive to the commonly used ”Make” build tool. SCons is based on Python and uses

Python scripts as configuration files. It is easily embedded in other applications.

Another advantage of SCons is the automatic scanning of files for dependencies,

whereas Make stores dependencies statically in a file.

Further information about SCons can be found at the official website [5].

2.7.4 ZThread

ZThread is a platform-independant C++ library for object oriented synchroniza-

tion and threading.

Additional information about ZThread can be found at the official website [6].

15

CHAPTER 2. IMPLEMENTATION

2.8 Exception Handling

The exceptions are specified in the ”exceptions.h” - file. In order to be able to

directly locate the origin of an exception, the parameters FILE , LINE are

passed on to the exception class.

To simplify matters, a macro for the creation of exceptions was implemented.

Using this macro, a new exception can be created with just one command. All the

exceptions used within the implementation inherit from a PTPException. The

advantage of this approach is that all exceptions can be catched by this basic

exception.

2.9 Problems

One big problem was the implementation of a multithreaded traceroute applica-

tion. There are many traceroute implementations available, but none of these was

threadsafe. Therefore a threadsafe implementation of a traceroute also had to be

implemented.

For the multithreaded traceroute, each of the threads creates its own ICMP Socket

for receiving the ICMP messages from the routers along the path. These ICMP

messages are received because the routers respond to the empty UDP messages

that were sent. This method is used to obtain the IP adresses of the routers con-

tained in the ICMP messages. Even though it is possible to create more than

one socket it would not make sense, because the system would not know where

to dispatch the ICMP message to. The reason for this behaviour is the stateless

nature of ICMP.

Another problem occured when sending UDP packages in order to obtain the IP

adresses of the routers along the path to the destination router. The checksum of

the UDP packets always was calculated incorrectly when using the system com-

mand ”send” and setting the TTL parameter. Therefore the UDP packets sent to

the hosts in the traceroute had to be built within the implementation. This was

done by using raw sockets and setting socket options. More information about

programming with raw sockets can be found at ”Zotteljedis Tipps zur Program-

mierung mit Raw Sockets” [7].

16

Chapter 3

Traffic Analysis

Analyzing the network traffic during the bandwidth retrieval process leads to some

interesting results. This analysis can be done by executing the command ”tcp-

dump”, which prints out the headers of packets on a network interface. The

resulting file can be analysed with ethereal, which is a network protocol analyzer.

The test environment consisted of three nodes:

IP
 A

sending host

IP
 B

receiving host

IP
 C

router

Figure 3.1: Test Environment

This is a list of all packets involved in one bandwidth retrieval process, where IP

A requests bandwidth from IP B:

17

CHAPTER 3. TRAFFIC ANALYSIS

Source Dest. Prot. Info

IP A IP B UDP Source port: 40993 Destination port: 40994

IP C IP A ICMP Time-to-live exceeded (Time to live

exceeded in transit)

IP A IP B UDP Source port: 40993 Destination port: 40995

IP B IP A ICMP Destination unreachable (Port unreachable)

IP A IP C SNMP GET

IP C IP A SNMP Source port: snmp Destination port: 32771

IP A IP C SNMP Source port: 32771 Destination port: snmp

IP C IP A SNMP Source port: snmp Destination port: 32771

IP A IP C SNMP Source port: 32771 Destination port: snmp

IP C IP A SNMP Source port: snmp Destination port: 32771

IP A IP B SNMP GET

IP B IP A SNMP Source port: snmp Destination port: 32771

IP A IP B SNMP Source port: 32771 Destination port: snmp

IP B IP A SNMP Source port: snmp Destination port: 32771

IP A IP B SNMP Source port: 32771 Destination port: snmp

IP B IP A SNMP Source port: snmp Destination port: 32771

18

CHAPTER 3. TRAFFIC ANALYSIS

3.1 Traceroute

These are the packets involved in the detection of the route to the destination.

Source Dest. Prot. Info

IP A IP B UDP Source port: 40993 Destination port: 40994

IP C IP A ICMP Time-to-live exceeded (Time to live

exceeded in transit)

IP A IP B UDP Source port: 40993 Destination port: 40995

IP B IP A ICMP Destination unreachable (Port unreachable)

As already described in Chapter 2.2, the IP addresses of the routers along the way

to the destination are determined by sending out UDP packages. To determine

the first router, the TTL of the UDP package is set to one. This can easily be

checked by reviewing the detailed information about the first UDP packet sent:

Internet Protocol, Src: IP A (IP A), Dst: IP B (IP B)

Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)

.... ..0. = ECN-Capable Transport (ECT): 0

.... ...0 = ECN-CE: 0

Total Length: 40

Identification: 0x2021 (8225)

Flags: 0x00

0... = Reserved bit: Not set

.0.. = Don’t fragment: Not set

..0. = More fragments: Not set

Fragment offset: 0

Time to live: 1

Protocol: UDP (0x11)

Header checksum: 0x1750 [correct]

Good: True

Bad : False

Source: IP A (IP A)

Destination: IP B (IP B)

19

CHAPTER 3. TRAFFIC ANALYSIS

The first router - in this case IP C - receives this packet and returns a ICMP TIMXCEED

packet, because the TTL counter has reached zero. After this step, the IP address

of the first router has already been obtained. The next step is to send another

UDP packet with a TTL of two. This packet forces the second router, which is

the receiving host, to return an ICMP message. As this router is already the des-

tination of the traceroute call, the IP addresses of the routers along the way were

detected successfully.

3.2 Bandwidth Retrieval

After having determined the routers along the path to the destination, the retrieval

of the information required for the bandwidth calculation starts. The following

table shows the SNMP packages sent during the information retrieval.

Since three values are required for the bandwidth calculation (ifSpeed, IfInOctets

and hrSystemDate), three SNMP request packages are sent to every router along

the path. In the table below one can easily see that firstly the information from

the first router is requested. After having obtained this information, the requests

are sent to the receiving host.

Source Dest. Prot. Info

IP A IP C SNMP GET

IP C IP A SNMP Source port: snmp Destination port: 32771

IP A IP C SNMP Source port: 32771 Destination port: snmp

IP C IP A SNMP Source port: snmp Destination port: 32771

IP A IP C SNMP Source port: 32771 Destination port: snmp

IP C IP A SNMP Source port: snmp Destination port: 32771

IP A IP B SNMP GET

IP B IP A SNMP Source port: snmp Destination port: 32771

IP A IP B SNMP Source port: 32771 Destination port: snmp

IP B IP A SNMP Source port: snmp Destination port: 32771

IP A IP B SNMP Source port: 32771 Destination port: snmp

IP B IP A SNMP Source port: snmp Destination port: 32771

20

Chapter 4

Installation

The following installation instructions are intended for Fedora systems (Core 4

and upwards).

4.1 Installation of Net-SNMP

The first component that needs to be installed is Net-SNMP. If Net-SNMP is not

installed on the computer, run the following commands in root mode, which install

Net-SNMP.

yum install net-snmp

yum install net-snmp-devel

If yum is not installed on the machine, please follow the installation instructions

on the official websites [3].

The next step is to register Net-SNMP as a service and configure autoload on

bootup.

chkconfig --add snmpd

chkconfig snmpd on

Next, a new user has to be added. For the registration of a user the service has to

be stopped, if it is already running.

service snmpd stop

The following command adds a new SNMPv3 user with a given username and

password.

21

CHAPTER 4. INSTALLATION

net-snmp-config --create-snmpv3-user -ro -a "password" username

Further information on SNMP authentication issues can be found at [9]

The last step is to start the service.

service snmpd start

To make sure that the installation process was finished correctly, simply try to

execute a SNMP walk. This command retrieves all the information stored in a

MIB on localhost, where ¡username¿ and ¡password¿ have to be substituted with

the real username and password.

snmpwalk -v 3 -u <username> -l auth -n "" -A <password> localhost

4.2 Required Libraries and Tools

Besides Net-SNMP, the Boost libraries are required in order to be able to build

the PTP - SNMP implementation. This is done by the following commands.

yum install boost

yum install boost-devel

If yum is not installed on the system, please visit the official websites for further

information regarding the installation [4].

4.3 Installation of PTP

The first thing to do is to get the rpm - package. It can be downloaded from the

PTP Sourceforge website [10]. After having obtained the rpm file, PTP can easily

be installed using the following command in the directory, where the rpm file was

stored:

$ rpm -ivh installationpackage.rpm

where installationpackage.rpm stands for the name of the downloaded rpm file.

22

CHAPTER 4. INSTALLATION

4.4 Daemon

The PTP daemon can be started using the following command:

$ service ptpd start

Analogously the service can be stopped:

$ service ptpd stop

The following command restarts the daemon:

$ service ptpd restart

The current status of the daemon can be requested with the following command.

$ service ptpd status

4.5 Minimal System Requirements

The following system requirements have to be fulfilled in order to make sure that

the PTP implementation works correct.

• Fedora Core 4 or higher

• boost version 1.32.0 or higher

• boost-devel version 1.32.0 or higher

4.6 Building RPMs

Building new RPMs (RPM Package Manager) packages can be done using the fol-

lowing instructions. Further information about building RPM files can be found

at the official RPM website[11].

For the creation of a RPM file, a .spec file is needed. This file contains the descrip-

tion of the package, compile information for the source and a list of all binaries

that have to be installed. The .spec file for the PTP RPM can be found on the

source CD or at Sourceforge [10]. When creating a new RPM, this file has to be

adapted.

23

CHAPTER 4. INSTALLATION

The actual creation can only be executed as root. The next step is to config-

ure a build tree. A build tree consists of the following subdirectories: BUILD,

SOURCES, SPECS, RPMS, SRPMS. It can be found at /usr/src/redhat/ in the

file system. Copy the spec file to the SPECS directory and put the sources into

the SOURCES directory.

Building a RPM file can be done by using the following command:

$ rpm -ba specfile.spec

The successfull installation can be tested by running bandwidth-retriever ”IP ad-

dress of destination host”.

24

Chapter 5

Interface Description

5.1 Interface

The new and lightweight interface for performance measuring according to PTP

contains a very slim interface to retrieve bandwidth measuring data. It contains

the class BandwidthRetriever that encapsulates the whole implementation. This

class has two methods: startBandwidthCalculation and registerAlgorithm. After

the startBandwidthCalculation call, the BandwidthRetriever retrieves bandwidth

data and passes them on to the the registered objects. The arguments that are

passed on to the method startBandwidthCalculation is a Boost shared pointer to

a BandwidthReceiver interface.

The parameter for the method registerAlgorithm is a Boost shared pointer to an

IntervalAlgorithm object. The object implementing BandwidthReceiverInterface

is a callback that receives performance data through the call of setBandwidth

and the object implementing BandwidthIntervalAlgorithm is responsible for the

calculation of the time between two meassurements. To obtain the information,

getInterval can be called with the current measurement information.

5.2 Implementation

The BandwidthRetriever is implemented as a Singleton Object that is responsi-

ble for handling connections to multiple hosts and for the administration of the

threads that need to do the performance measurements.

25

CHAPTER 5. INTERFACE DESCRIPTION

Calls to startBandwidthCalculation starts a measurement thread or increases the

reference count for the currently running thread. This ensures that multiple con-

nections to the same host will not span of multiple measurement threads. The

BandwidthIntervalAlgorithm is implemented as a pseudo Enumeration / Single-

ton Combination. There is an enumeration representing different algorithms. The

enumeration keys are used to identify the different algorithms and retreive them

through a factory. For that reason it is possible that the BandwidthRetriever does

not need to know anything about the algorithm that was implemented on the one

hand, and on the other hand it is possible for the BandwidthRetriever to perform

the measurement in a thread and also respond to higher level protocols. Due to

the combination with the enumeration an easy identification of the algorithm is

possible, and also several connections using the same algorithm without creating

duplicated objects.

The setBandwidth method can throw a ClientTerminatedException. If this is

the case, the the reference count is decreased. If the reference count is zero, the

Bandwidth Measurement is stopped.

5.3 Methods

5.3.1 startBandwidthCalculation

Method: void startBandwidthCalculation(const boost::shared ptr

<BandwidthReceiver> & p receiverInterface)

Returnvalue: void

Parameter: Boost shared pointer to receiverInterface object

Description: This method starts the bandwidth calculation for a

host that is specified in the BandwidthReceiver object. The

algorithm used for the interval detection is specified by the

registerAlgorithm method mentioned below.

26

CHAPTER 5. INTERFACE DESCRIPTION

5.3.2 registerAlgorithm

Method: static void registerAlgorithm(const std::string & p algorithmId,

const boost::shared ptr <BandwidthIntervalAlgorithm> & p algorithm)

Returnvalue: void

Parameter 1: string containing the algorithmId

Parameter 2: Boost shared pointer to BandwidthIntervalAlgorithm object

Description: This method registers / specifies the algorithm used to detect

the interval between bandwidth retrievals.

5.4 Examples

The following example shows how easy bandwidth can be retrieved. The only thing

to do is to implement a BandwidthReceiver and to start the bandwidth calculation.

For the BandwidthReceiver, the following methods have to be implemented:

• getHost - returns the IP address of the host for which the bandwidth has to

be retrieved.

• getAlgorithmIdentifier - returns the ID of the algorithm that is intended to

retrieve the interval between the bandwidth requests.

• setBandwidth - this method is responsible for handling bandwidth data. If a

ClientTerminatedException is thrown, no more bandwidth data is requested.

• routeChanged - this method allows to react on changes along the route. If a

ClientTerminatedException is thrown, no more bandwidth data is requested.

• exceptionOccured - this method is an asynchronous exception handler for

exceptions occurring on the daemon side. If a ClientTerminatedException

is thrown, no more bandwidth data is requested.

After having implemented these methods, the bandwidth calculation can be started

by calling SocketBandwidthRetriever::start (in this case within a main method).

27

CHAPTER 5. INTERFACE DESCRIPTION

Implementation of the main method:

1 #inc lude <iostream>
2

3 #inc lude ” TestRece iver . h”
4 #inc lude ” SocketBandwidthRetr iever . h”
5 #inc lude ”PTPConfiguration . h”
6 #inc lude ”UnixDomainSocket . h”
7

8 i n t main (i n t argc , char ∗∗ argv)
9 {

10 boost : : shared ptr<BandwidthReceiver> r e c e i v e r (new '

TestRece iver (argv [1] , ” ptpAlgorithm”)) ;
11

12 SocketBandwidthRetr iever : : s t a r t (r e c e i v e r) ;
13

14 whi le (true) {
15 ZThread : : Thread : : s l e ep (2000) ;
16 }
17

18 return 0 ;
19 }

Implementation of the BandwidthReceiver:

1 #inc lude <iostream>
2

3 #inc lude ” TestRece iver . h”
4

5 TestRece iver : : TestRece iver (const std : : s t r i n g & p host ,'
const std : : s t r i n g & p a l g o r i t hm Id en t i f i e r)

6 : m host (p host) , m a l go r i thmId en t i f i e r ('
p a l g o r i t hm Id en t i f i e r)

7 {
8 }
9

10 std : : s t r i n g TestRece iver : : getHost () const
11 {
12 return m host ;
13 }

28

CHAPTER 5. INTERFACE DESCRIPTION

14 std : : s t r i n g TestRece iver : : g e tA l go r i thmId en t i f i e r () const
15 {
16 return m a l go r i thmId en t i f i e r ;
17 }
18

19 void TestRece iver : : setBandwidth (boost : : u i n t 64 t '
p bandwidth) const throw (ClientTerminatedException)

20 {
21 std : : cout << ”bandwidth : : ” << p bandwidth << ” (b i t s /'

s) ” << std : : endl ;
22 }
23

24 void TestRece iver : : routeChanged () const throw ('
ClientTerminatedException)

25 {
26 std : : cout << ” route Changed” << std : : endl ;
27 }
28

29 void TestRece iver : : exceptionOccured (const PTPException & '

except ion) const throw (ClientTerminatedException)
30 {
31 std : : cout << except ion . summary() << std : : endl ;
32 }
33

34 TestRece iver : : ˜ TestRece iver ()
35 {
36 }

29

CHAPTER 5. INTERFACE DESCRIPTION

5.5 Class Diagram

<<
BandwidthIntervallAlgorithm
 >>

getInterval
 (
boost::
uint64
 rtt
):
 boost::
uint64

BandwidthRetriever

startBandwidthCalculation
 (
const
 boost::shared_
 ptr
<
BandwidthReceiver
 > & p_
 receiverInterface
 ,

BandwidthReceiverInterface
): void

static
 registerAlgorithm
 (string, boost::shared_
 ptr
<
BandwidthIntervalAlgorithm
 > algorithm): void

<<
BandwidthReceiverInterface
 >>

setBandwidth
 (boost::
 uint64
 bandwidth): void

getHost
 (): String

const
 getAlgorithmIdentifier
 (): string

1

*

Figure 5.1: Interface Class Diagram

30

List of Figures

2.1 Traceroute IP Detection . 6

2.2 Class Diagram . 9

2.3 Message Sequence Chart . 10

2.4 Daemon architecture . 12

2.5 Communication between daemons without any error 13

2.6 Communication between daemons, no response from client 14

3.1 Test Environment . 17

5.1 Interface Class Diagram . 30

31

Bibliography

[1] Michael Welzl: Scalable Performance Signalling and Congestion

Avoidance

Kluwer Academic Publishers, Dordrecht 2003, ISBN 1-4020-7570-7

[2] Bjarne Stroustrup: Die C++ Programmiersprache

Addison-Wesley, Boston 2000, ISBN 3-8273-1660-X

[3] Net-SNMP Application Suite:

http://net-snmp.sourceforge.net/

visited 2005-12-19

[4] Boost C++ Libraries:

http://www.boost.org

visited 2005-12-19

[5] SCons - build your software, better:

http://www.scons.org

visited 2005-12-19

[6] ZThreads - A platform-independent, multithreading and

synchronization library for C++:

http://zthread.sourceforge.net/

visited 2005-12-19

[7] Zotteljedis Tipps zur Programmierung mit Raw Sockets:

http://www.zotteljedi.de/doc/raw-socket-tipps.html

visited 2005-12-18

[8] Unix Domain Sockets in Linux

http://www.netzmafia.de/skripten/server/ThomasSocket2.pdf

visited 2006-02-15

33

[9] Setting up SNMPv3 Users

http://www.netadmintools.com/art485.html

visited 2006-01-07

[10] PTP Download Website on Sourceforge.net

http://www.sourceforge.net/ptpd

[11] RPM Package Manager

http://www.rpm.org

visited 2006-02-07

[12] Karsten Guenther: LATEX - Das umfassende Handbuch.

Galileo Press GmbH, Bonn 2004, ISBN 3-89842-510-X

34

