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Abstract. Pay-on-demand resource provisioning is an important driver
for cloud computing. Virtualized resources in cloud computing open
for resource awareness, such that applications may contain resource
management strategies to modify their deployment and reduce resource
consumption. The ABS language supports the modelling of deployment
decisions and resource management for active objects. In this paper, the
semantics of ABS is captured directly as a Coloured Petri Net (CPN)
model capable of representing any ABS program by an appropriate initial
marking. We define an abstraction relation between the CPN model and
the language semantics such that markings of the CPN model become
abstract ABS configurations. We use a CPN model checker as an abstract
interpreter to investigate resource distribution and starvation problems
for deployed active objects in ABS.

1 Introduction

Pay-on-demand resource provisioning is an important driver for cloud computing.
Using resources on the cloud, a service provider does not need to cater hardware
resources upfront to deploy the service but can lease resources as required by the
deployed service. Resources may be dynamically added or removed depending
on the traffic to a service. The enabling virtualization technology introduces a
software layer representing hardware resources, which means that deployment
decisions can be programmed. Virtualized resources open for resource awareness,
such that applications may contain resource management strategies to modify
their deployment and reduce resource consumption. In this context, it is interesting
to analyze deployment scenarios for services with respect to client traffic to, e.g.,
establish the amount of resources required for the timely delivery of a service.

Programming models which decouple control flow and communication, such
as Actors [1,2] and active objects [9, 16,26], inherently support both scalability
(as argued with the Erlang programming language [5] and Scala’s actors [22])
and compositional reasoning [12, 17, 18]. These features are also interesting for
distributed services which should adapt to elastic cloud deployment.
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In this paper, we develop a method to investigate resource distribution
for deployed active objects in ABS by a translation into Coloured Petri Nets
(CPNs) [25]. ABS is a formally defined active object language [26, 29] which
directly supports the modelling of deployment decisions and resource management
for active objects. CPNs extend the basic Petri net model [33] with data and
data manipulation. We extend previous work [19] from behavioural models to
deployment models such that the formal semantics of deployment models in ABS
is captured directly as a hierarchical CPN. Consequently, the number of places in
the CPN model is independent of the size of a program, and different programs are
captured by changing the initial marking of the CPN model. This also allows the
dynamic launch of virtual resources by the firing of CPN transitions. We define
an abstraction relation between the CPN model and the language semantics. The
model checker of CPN Tools is used as an abstract interpreter to investigate
resource distribution and starvation problems for deployed active objects in ABS.

The main contributions of this paper are: (1) a formal model of deployed ABS
programs as a hierarchical CPN that reflects the ABS semantics with markings
as abstract configurations; (2) an abstraction relation translating resource-aware
ABS programs into CPN markings and a proof of correctness of the abstraction
relation; and (3) management support for deployment decisions in terms of
automated resource analysis of starvation freedom and resource redistribution.

The paper is organized as follows: Section 2 introduces the ABS language,
focusing on the modelling of deployment, and Section 3 briefly introduces CPNs.
Section 4 presents the CPN model of the ABS semantics and Sect. 5 the abstrac-
tion relation between the CPN model and the ABS semantics, as well as the
sketch of the soundness proof. The interested reader can find the full proof in
a companion technical report [20]. Section 6 shows how the CPN Tools model
checker can be used for the resource analysis of ABS programs. Finally, Sect. 7
draws some conclusions and discusses related work.

2 Deployment Modelling in ABS

ABS [26] is a formally defined actor-based language for the executable modelling
of distributed, object-oriented systems. ABS supports deployment modelling

by a separation of concerns between the resource costs of executions and the
resource capacities of deployment components on which executions take place [29];
deployment components can be understood as (virtual) locations for computa-
tion. Deployment decisions can be made inside models, by allocating objects to
deployment components with given resources at creation time (e.g., [4,27]).

ABS consists of a functional layer to express computation, an imperative
layer to express communication and synchronization, and a deployment layer
to express deployment decisions. In this paper we elide the functional layer to
focus on control flow and deployment; the relevant syntax is shown in Fig. 1. A
program consists of class definitions which contain field declarations and method
definitions, and a main block. We follow the syntactic conventions of Java and
only explain syntax that differs from Java.
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Syntactic categories.
𝑠 in Stmt

𝑒 in Expr

𝑔 in Guard

Definitions.
𝑃 ::= CL {𝑇 𝑥; 𝑤𝑠 }

𝐶𝐿 ::= class 𝐶 (𝑇 𝑥) { 𝑇 𝑥; 𝑀}
𝑀 ::= 𝑇 𝑚 (𝑇 𝑥) {𝑇 𝑥; 𝑤𝑠 }

𝑠 ::= skip | 𝑥 = rhs | [DC:𝑒] 𝑥 = new 𝐶(𝑒) | suspend | await 𝑔
| if 𝑒 { 𝑤𝑠 } else { 𝑤𝑠 } | while 𝑒 { 𝑤𝑠 } | return 𝑒

𝑤𝑠 ::= 𝑠 | [Cost: 𝑒] 𝑠 | 𝑤𝑠; 𝑤𝑠
rhs ::= 𝑒 | 𝑒!𝑚(𝑒) | 𝑥.get

𝑔 ::= 𝑥? | duration(𝑒, 𝑒) | 𝑔 ∧ 𝑔

Fig. 1. ABS syntax. Overbar notation denotes lists.

The imperative layer of ABS is used for internal control flow, and for communi-
cation and synchronization between concurrent objects. Objects are instantiated
from classes by the statement [DC: server ] 𝑜 = new 𝐶(𝑒), where the optional
annotation DC: server expresses the deployment component on which the object
should be created and 𝑒 are constructor arguments. A reserved field thisDC
points to the object’s deployment component, just like this points to the object’s
identifier. Concurrent objects execute processes which stem from asynchronous
method calls and terminate upon method completion. Asynchronous method
calls 𝑓 = 𝑜!𝑚(𝑒) are non-blocking and return a future, i.e., a placeholder for the
method reply (see, e.g., [9]). The blocking expression 𝑓.get retrieves the return
value from a future 𝑓 .

Objects combine reactive and active behaviour (i.e., a run method is auto-
matically activated upon object creation) by means of cooperative scheduling:
Processes in an object may suspend at explicit scheduling points, allowing the
scheduler to transfer control to another enabled process. Between the scheduling
points, only one process is active in each object, so race conditions are avoided.
Unconditional scheduling points are expressed by the statement suspend, condi-
tional scheduling points by await 𝑔, where 𝑔 may be a synchronization condition

on a future, written 𝑓? (where 𝑓 points to a future) or a duration guard, written
duration(𝑏, 𝑤) where 𝑏 and 𝑤 are bounds on the time interval before the condition
becomes true. ABS supports the modelling of dense time [8]; the local passage of
time is expressed in terms of durations (as in, e.g., UPPAAL [31]).

Deployment models capture physical or virtual infrastructure in ABS using
dynamically created deployment components [28, 29] to represent computing
environments. A deployment component is a modelling abstraction which captures
locations offering (restricted) resources to computations. Deployment components
are created as instances of a special class 𝐷𝐶 which takes as parameter a number
expressing the resource capacity of the deployment component per time interval.
These components implement a method transfer(𝑑𝑐, 𝑒) which enables vertical

scaling by shifting up to 𝑒 resources to a target deployment component 𝑑𝑐. This is
in contrast to the horizontal scaling which is realized by the dynamic allocation of
deployment components. ABS also supports cost annotations to model resource
consumption. Thus, weighted statements 𝑤𝑠 are statements [Cost: 𝑒] 𝑠 which
express that 𝑒 resources are required to complete execution of the statement 𝑠. In
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(New-DC)
fresh(𝑑𝑐) [[𝑒]]𝑎∘𝑙 = 𝑛

𝑜(𝑎, {𝑙 | 𝑥 = new DC(𝑒); 𝑠}, 𝑞)
→ 𝑜(𝑎, {𝑙 | 𝑥 = 𝑑𝑐; 𝑠}, 𝑞) 𝑑𝑐(𝑛, 0, 𝑛)

(Run-To-New-Interval)
blocked(𝑐𝑛, 𝑡)

0 < 𝑑 ≤ mte(𝑐𝑛, 𝑡) ⌈𝑡⌉ = 𝑡 + 𝑑
{𝑐𝑛 𝑐𝑙(𝑡)}

→𝑡 {timeAdv(rscRefill(𝑐𝑛), 𝑑) 𝑐𝑙(𝑡 + 𝑑)}

(Cost1)
𝑎(thisDC) = 𝑑𝑐 𝑎𝑛 = Cost: 𝑒
[[𝑒]]𝑎∘𝑙 = 𝑐 𝑐 ≤ 𝑛 − 𝑢

𝑜(𝑎, {𝑙 | [𝑎𝑛′] 𝑠}, 𝑞) 𝑐𝑛 → 𝑜(𝑎′, 𝑝′, 𝑞′) 𝑐𝑛′

𝑜(𝑎, {𝑙 | [𝑎𝑛] 𝑠}, 𝑞) 𝑑𝑐(𝑛, 𝑢, 𝑘) 𝑐𝑙(𝑡) 𝑐𝑛
→ 𝑜(𝑎′, 𝑝′, 𝑞′) 𝑑𝑐(𝑛, 𝑢 + 𝑐, 𝑘) 𝑐𝑙(𝑡) 𝑐𝑛′

(Cost2)
𝑎(thisDC) = 𝑑𝑐 𝑎𝑛 = Cost: 𝑒
[[𝑒]]𝑎∘𝑙 = 𝑐 𝑐 > 𝑛 − 𝑢 𝑛 ̸= 𝑢
𝑐′ = 𝑐 − (𝑛 − 𝑢) 𝑎𝑛′ = Cost: 𝑐′

𝑜(𝑎, {𝑙 | [𝑎𝑛] 𝑠}, 𝑞) 𝑑𝑐(𝑛, 𝑢, 𝑘) 𝑐𝑛
→ 𝑜(𝑎, {𝑙 | [𝑎𝑛′] 𝑠}, 𝑞) 𝑑𝑐(𝑛, 𝑛, 𝑘) 𝑐𝑛

(Transfer)
fresh(𝑓) [[𝑒]]𝑎∘𝑙 = 𝑑𝑐 [[𝑒′]]𝑎∘𝑙 = 𝑑𝑐′ [[𝑒′′]]𝑎∘𝑙 = 𝑖 𝑖′ = min(𝑖, 𝑘)

𝑜(𝑎, {𝑙 | 𝑥 = 𝑒!transfer(𝑒′, 𝑒′′); 𝑠}, 𝑞) 𝑑𝑐(𝑛, 𝑢, 𝑘) 𝑑𝑐′(𝑛′, 𝑢′, 𝑘′)
→ 𝑜(𝑎, {𝑙 | 𝑥 = 𝑓 ; 𝑠}, 𝑞) 𝑑𝑐(𝑛, 𝑢, 𝑘 − 𝑖′) 𝑑𝑐′(𝑛′, 𝑢′, 𝑘′ + 𝑖′) 𝑓(𝑖′)

Fig. 2. Semantics of the deployment layer of ABS (based on [29]).

this paper we model so-called elastic computing resources, where the computation
speed of virtual machines is determined by the amount of elastic computing
resources allocated to these machines per time interval. The computation time of
processes depends on the available resources of their deployment component and
on how many other processes are competing for these resources.

Semantics. The semantics of ABS is given by a (transitive) transition relation
→ over configurations realizing a maximal progress time model, in which time
will only advance if the execution is otherwise blocked. We here focus on the
transition rules formalizing the cost and deployment aspects of the execution of
ABS programs. Configurations include objects 𝑜(𝑎, 𝑝, 𝑞), where 𝑜 is the identifier,
𝑎 the state, 𝑝 the active process, and 𝑞 the queue of suspended processes; futures
𝑓(𝑣) with identifier 𝑓 and return value 𝑣; and deployment components 𝑑𝑐(𝑛, 𝑢, 𝑘)
with identifier 𝑑𝑐, 𝑛 resources available in the current time interval, 𝑢 resources
already used in the current time interval, and 𝑘 resources available in the next
time interval. Technically, the deployment components book-keep the resource
consumption of their allocated objects per time interval. Thus, in New-DC, a
new deployment component with a fresh identifier 𝑑𝑐 is created, with 𝑛 resources
available in both the current and the next time interval. Rule Run-To-New-

Interval captures the advance of time. Here, the brackets enclose all objects
in the configuration as well as a global clock cl(t) such that time advances
uniformly. The predicate blocked(𝑐𝑛, 𝑡) expresses that no (further) reduction
is possible in 𝑐𝑛 at time 𝑡, so time may advance. Let mte(𝑐𝑛′, 𝑡) denote the
maximal time advance until enabled(𝑐𝑛′). The condition ⌈𝑡⌉ = 𝑡 + 𝑑 expresses
that time advance has arrived at the next resource provisioning (a corresponding
rule without this condition advances time without resource provisioning). Two
auxiliary functions recursively change the state 𝑐𝑛′: timeAdv decrements counters
for duration-expressions and rscRefill provisions resources in the deployment
components by changing each 𝑑𝑐(𝑛, 𝑢, 𝑘) to 𝑑𝑐(𝑘, 0, 𝑘).
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Rule Cost1 removes the cost annotation of a statement if the associated
deployment component has sufficient resources to execute the statement in the
current time interval. Rule Cost2 reduces the remaining cost of executing
a statement if the deployment component can provision some but not all of
the required resources. Rule Transfer shifts 𝑒′′ resources from a deployment
component 𝑒 to another deployment component 𝑒′, up to the amount of resources
that 𝑒 has allocated for the next time interval. This change only affects 𝑒′ for the
next time interval. For further details on the semantics of deployment components
in ABS, we refer to [29].

3 Coloured Petri Nets

Petri nets capture true concurrency in terms of causality and synchronization [33].
A basic (low-level) Petri net constitute a directed bipartite graph comprised of
places and transitions connected by arcs. An arc (𝑝, 𝑡) is outgoing for a place
𝑝 and incoming for a transition 𝑡, whereas an arc (𝑡, 𝑝) is incoming for 𝑝 and
outgoing for 𝑡. Places are used to model the states of the system and may hold
tokens. A marking consists of a distribution of tokens on the places of the Petri net
and represent a state of the modelled system. Transitions are used for modelling
the actions of the system. A transition is enabled in a marking when there is a
token on each of its input places. An enabled transition may occur (fire) and the
effect of occurrence is to consume a token from each input place of the transition
and add a token to each of its output places. This in turn changes the current
marking of the Petri net model.

Coloured Petri Nets (CPNs) is a well-established form of high-level Petri
nets [25]. High-level Petri nets extend the basic Petri net formalism to enable
the modelling of data and data manipulation. Each place in a CPN has an
associated type determining the data values that tokens residing on the place
may have, i.e., the tokens in a place represent individual values of that type. The
types, representing sets of values, are called colour sets and individual values
are seen as colours. A type can be arbitrarily complex, defined by many sorted
algebra in the same way as abstract data types. A place may in general hold
a multi-set of token values over the type of the place. Arcs have associated arc
expressions and transitions may have an associated boolean guard expression.
These expressions may contain free variables which needs to be bound to values
in order to determine whether a transition is enabled, i.e., whether the required
tokens are present on input places and whether the guard evaluates to true.
Similarly, the multi-set of tokens removed from input places and added to output
places when an enabled transition occurs are determined by evaluating the arc
expression of the transition according to the values bound to the free variables.

Below we formally define CPNs [25] in their basic form without hierarchical
modules. In the rest of the paper we use hierarchical CPNs. Hierarchies enrich
CPNs with modularity in order to support the practical modelling of large systems.
The basic definition of CPNs suffices for our purposes as any hierarchical CPN
can be unfolded to a semantically equivalent non-hierarchical CPN.
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Definition 1 (Coloured Petri net). A coloured Petri net (CPN) is a tuple

(𝑃, 𝑇, 𝐴, 𝛴, 𝑉, 𝐶, 𝐺, 𝐸, 𝐼) where

1. 𝑃 is a finite set of places 𝑃 and 𝑇 is a finite set of transitions 𝑇 such that

𝑃 ∩ 𝑇 = ∅;
2. 𝐴 is the set of arcs, such that 𝐴 ⊆ (𝑃 × 𝑇 ) ∪̇ (𝑇 × 𝑃 );
3. 𝛴 is a finite set of non-empty types (colour sets);

4. V is a set finite set of typed variables 𝑉 such that type(𝑣) ∈ 𝛴 for all 𝑣 ∈ 𝑉 ;

5. 𝐶 : 𝑃 → 𝛴 is a colouring function associating a type to each place;

6. 𝐺 : 𝑇 → Expr𝑉 and 𝐸 : 𝐴 → Expr𝑉 are labelling functions associating

expressions with free variables from 𝑉 to transitions and arcs, respectively

such that type(𝐺(𝑡)) = bool for all 𝑡 ∈ 𝑇 and type(𝐸(𝑎)) = 𝐶(𝑝)𝑀𝑆 where 𝑝
is the place connected to a and 𝐶(𝑝)𝑀𝑆 denotes the multi-set type over 𝐶(𝑝).

7. 𝐼 : 𝑃 → Expr∅ is an initialization function associating a closed expression to

each place specifying the initial marking of the place such that type(𝐼(𝑝)) =
𝐶(𝑝)𝑀𝑆 for all 𝑝 ∈ 𝑃

4 A CPN Model of ABS Semantics

In [19] the authors presented a CPN, modelling the concurrency of ABS. Active
objects in [19] were represented as tokens whose colour contains their identifier
and process pool. The process pool was implemented as a list, the head of which
was the active process and the tail the list of the processes that were candidates
to be activated by the scheduler. This list was being updated according to the
calling methods of the other objects following the communication mechanism
of ABS. In this paper, we focus on the deployment part of ABS. We present
a new hierarchical CPN, modelling the deployment fragment of the language.
Recall here, that hierarchies in CPNs introduce modularity. Each submodule can
be seen as a "hidden part" of the net, named as the rectangular tag below the
corresponding so-called substitution transition (in the figures they have double
outer lines). Similarly, the double lined places keep the input/output marking of
each submodule. In our CPN, we modelled the life time of program execution
in a cyclic way, where the resources are refilled at the completion point of each
cycle. This is illustrated in Fig. 3 where the top-layer of the model is shown.
In the bottom part of this figure, we see the resource refill before the process
execution in the next cycle.

We take as an input tokens that can be produced from the imperative part [19]
of ABS as described above and we add information concerning the cost of each
process and the deployment component they are located. This information,
together with the deployment semantics of ABS can be used to verify starvation
freedom of active objects and explore resource management strategies.

In the rest of the section, we present the CPN model which follows the
corresponding semantic rules of ABS that add resource awareness through a
running example. It is inspired from the change of the calling behaviours of
cellphone clients during new year’s eve midnight. Based on this example, we
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Fig. 3. Top-level module of the CPN deployment model

show in Sect. 6 how resource reallocation between deployment components can
be used for load balancing purposes.

4.1 Telephone and SMS Services at Midnight on New Year’s Eve

We use a running example inspired from cellphone clients behaviour in order to
illustrate the relation between the CPN model and ABS programs and to show
how we can use the model checker of CPN Tools for load balancing scenarios.

The average demand on phone calls and SMS messages from cellphone clients
during the year is relatively low and the available resources suffice in a current
distribution. There are some particular moments of the year like, for example,
around the midnight of new year’s eve, where this behaviour changes and a large
number of SMS is requested by the clients while the call requests are negligible.
Then, the initial distribution is not adequate, since there is a lack of resources
for the SMS and an overplus for the calls.

In Fig. 4, we provide the ABS implementation of the above scenario [29] where
telephone and SMS servers have been realised with the two corresponding classes
and the operational cost annotated in square brackets at the beginning of the
statements. We see that each SMS has cost 1 and each call has cost proportional
to its duration. Cellphone clients can be implemented with corresponding classes
allowing objects to make method calls to the SMS and telephone services.

As mentioned above, we use CPNs to model the deployment part of ABS. The
markings shown in the current section are related to our running example. It is
important to note that our CPN model is parametric and different ABS programs
can be analysed by setting the initial marking accordingly. In our example, we
modelled the SMS and the telephone servers in CPNs as two different tokens
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1 class TelephoneServer{

2 Unit call (Int calltime) {

3 while (calltime > 0) { [Cost:1] calltime = calltime − 1; await duration (1,1); }

4 }

5 }

6 class SMSServer {

7 Unit sendSMS () { [Cost:1] skip; }

8 }

9 {// Main block
10 DC telcomp = new DC(1);

11 DC smscomp = new DC(2);

12 [DC: smscomp] SMSServer sms = new SMSServer();

13 [DC: telcomp] TelephoneServer tel = new TelephoneServer();

14 // Start client handsets...
15 }

Fig. 4. Implementation of Telephone and SMS Service.

representing the corresponding objects of Fig. 4 (TelephoneServer and SMSServer).
Those tokens have as colour triples of the form (ob, dc, lst), where ob is the object
identifier and dc is the deployment component of the object execution. The last
component (lst) models the client behaviour. In particular, it represents the
process pool of the server object that keeps all the processes created from the
clients calls to the corresponding service. Each process comes along with the cost
of its execution, so lst is a list of triples (proc, cost, bool), where 𝑏𝑜𝑜𝑙 is a flag
indicating whether the process has completed its execution.

Figure 5 shows the CPN module representing the imperative layer of ABS. Ini-
tially, the model has one token in place Ready and the transition Imperative Layer
is enabled. Recall that the colour of the object tokens have the form (ob, dc, lst)
as explained above. In Fig. 5, we have two tokens produced in place Busy Objects.
The first one represents the object TelephoneServer with identifier 1 located in
the first deployment component having in its process pool two processes: one
with identifier 1 and cost 2 and one with identifier 2 and cost 4. The boolean
flags set to false indicate that the processes have not been executed yet (it can
be changed to true after firing Process Completed). Similarly, the second token
represents the SMSServer object. Place DC Allocated is a counter of the deploy-
ment components created so far (for details, see [20]). Places Current State and
Current Configuration have as a colour set a list of pairs (dc, cap) referring to the
capacities of each deployment component. Place Current State keeps the current
resource distribution while place Current Configuration records the distribution
that will take place in the next cycle (resp. next time interval in ABS).

Figure 6 shows that when transition Reconfigure fires, the marking of the
place Current Configuration is updated according to the function Transfer of its
incoming arc inscription:

fun Transfer (fromdc,todc) cap config = List.map (fn (dc,ccap) =>
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Fig. 5. CPN module of the imperative layer
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Fig. 6. CPN module for component reconfiguration

if (dc = fromdc) then (dc,ccap - cap) else (if (dc = todc) then (dc,
ccap+cap) else (dc,ccap))) config

This function transfers resources from one deployment component to another.
When transition Reconfigure Done fires, the reconfiguration has been completed.
Then the resources can be refilled (details of the related implementation can
be found in [20]), and the marking of the place Current State can be updated
according to the function Transfer and proceed to the execution.

Figure 7 shows the module related to the process execution and the resource
consumption. Places Busy Objects and Current State are fusion places (i.e they
appear in more than one module and share the same marking). Recall the meaning
of their markings from Fig. 5. Object 2 needs for the execution of its first process
in the list (having identifier 3) 1 resource and the availability of the second
deployment component according to the marking of the place Current State is 2
resources (having colour (2, 2)). As a result, transition Fully Executable (Figure 7)
can fire and set its cost to zero and the boolean flag to true (recall that the boolean
flag is related to whether the process has been fully executed or not). After this,
transition Process Completed of Fig. 5 is enabled and the corresponding element
of the list (head) is removed. Consider again Fig. 7: object 1 needs 2 resources
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Execute
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[cap = getCapacity dc config, 
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P_HIGH

Completed
Execution

t10

config

(ao,dc,(pid,cost,false)::ps)
(ao,dc,(pid,0,true)::ps)

Consume (dc,cost) config

config

(ao,dc,(pid,cost,false)::ps)

(ao,dc,(pid,cost - cap,false)::ps)

Consume (dc,cap) config

(ao,dc,(pid,cost,false)::ps)

config

if (cap < cost)
then 1`(ao,dc,(pid,cost - cap,false)::ps)
else empty

if (cap >= cost)
then 1`(ao,dc,(pid,0,true)::ps)
else empty

if (cap >= cost) then Consume (dc,cost) config
else Consume (dc,cap) config

In/Out

In/OutIn

Out

1 1`()

2

1`(1,1,[(1,2,false),(2,4,false)])++
1`(2,2,[(3,1,false),(4,7,false)])

1

1`[(1,1),(2,2)]

Fig. 7. CPN module for process execution

to fully execute its first process while there is only 1 available, according to the
marking of the place Current State. Hence it can only partially execute process 1
by consuming all available resources (here 1) when transition Partially Executable
enabled. Then the token of the object 1 will be moved to the place Starving Objects
with the remaining cost updated to 1, until the marking of place Current State
will show resource availability at the deployment component greater or equal to
1. This can be done at a next cycle in the model, after possible resource transfer
and refill. In such a case, transition Execute Starving will be enabled and send the
token back to the Busy Objects place; otherwise, in case of insufficient resource
for completion, it will be placed again to the place Starving Objects.

5 Abstraction Relation and Soundness

The model presented in Sect. 4 translates faithfully the fragment of ABS which
is responsible for the resource awareness of the language. An abstraction function
matching program configurations with CPN markings followed by a soundness
proof guarantee the faithfulness of this translation. In this section, we define the
abstraction relation 𝛼 that associates each ABS program configuration with a
marking of the CPN model and each small step semantics of ABS with a finite
sequence of enabled CPN transitions. This relation is an abstract simulation

relation, where the abstraction stands for the extraction of the elements related
to the resources from each ABS configuration.
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Before introducing the abstraction function, we note that in ABS, configu-
rations are multi-sets containing the objects and the deployment components.
Recall also that each object contains a unique object identifier, information
about the deployment component to which it is located, an active process that
is currently under execution, and a pool of processes that are the candidates
to be executed. Below, we introduce the abstraction function 𝛼 and represent
all the above information at the level of tokens. Hence, we need first to define
the corresponding sets and then to proceed to the definition of the abstraction
function. We represent the set of ABS program configurations with 𝒞, the set of
the active objects of the program as Obj, the set of the deployment components
as Dc, and the set of the processes as Proc.

We can now define the functions ob and dc mapping configurations to objects
and deployment components, respectively, as 𝑋 : 𝒞 → 𝑌 where 𝑋 ∈ {ob, dc} and
𝑌 ∈ {Obj, Dc}, with the obvious matching. Similarly, we define the functions
pr and pp mapping objects to processes and sets of processes (process pools) as
𝐹 : Obj → 𝑍, where 𝐹 ∈ {pr , pp} and 𝑍 ∈ {Proc, 𝒫(Proc)}. We also define pdc :
𝒞 → 𝒫(Dc). Since each element among the objects, the deployment components
and the processes has a unique identifier we use, by convention, positive natural
numbers to translate it. This leads to the definition of the following injections:
𝐿 : 𝑊 → N* where 𝐿 ∈ {obj_id, dc_id, proc_id} and 𝑊 ∈ {Obj, Dc, Proc}
(with the obvious matching). We also define a cost function, assigning to each
process the cost of its execution: cost : Proc → N as well as two capacity functions
cap and ncap related to the resource capacity of each deployment component (cap

for the current and ncap for the next time interval), defined as cap : Proc → N
(resp. for ncap). Also, we define the function cc : 𝒫(Dc) → 𝒫(Dc × N), where
cc(𝑆) 𝑑𝑒𝑓= {(dc_id(𝑠), cap(𝑠)) ∈ N* × N | 𝑠 ∈ 𝑆}. Finally, we define the function
cpq : 𝒫(Proc) → 𝒫(N* ×N×B), mapping the process pools (i.e. sets of processes)
to sets of tuples, each representing the process identifier, the corresponding cost
and a boolean flag (where B is the set of booleans). In particular, cpq(𝑆) 𝑑𝑒𝑓=
{(proc_id(𝑠), cost(𝑠), 𝑏) ∈ N* × N × B | 𝑠 ∈ 𝑆 ∧ 𝑏 ∈ B}. Similarly to the function
cc, we define the function ncc where, instead of the function cap(𝑠) of 𝑐𝑐 we use
the function ncap(𝑠).

So far, we have defined elementary functions to represent the interesting
information taken from ABS configurations in order to form the appropriate
colour sets that are used in the model. Recall from Sect. 4 that the colour set of
the tokens representing the objects of an ABS program is (ob, dc, lst) where ob is
the object identifier, dc is the deployment component where the object is located,
and lst is the process pool augmented with information about the cost. More
concretely, lst is a list of triples (proc, cost, bool) indicating the identifier of each
process, its corresponding cost and a boolean flag showing whether the execution
of a process has been completed or not. Recall also that the colour set of the
deployment components is a pair (dc, cap) where dc is the deployment component
identifier and cap its resource capacity. The colour set of the place Current State
represents the current resource distribution and place Current Configuration the
distribution that will take place at the next time interval.
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Now, let us define the abstraction function, which induces an abstract sim-
ulation relation between ABS program configurations and CPN tokens. For all
configurations 𝑐 ∈ 𝒞:

𝛼(𝑐) =
⋂︀

{𝑀 | ∃ 𝑝, 𝑝′, 𝑝′′ ∈ 𝑃 s.t. 𝑝 ̸= 𝑝′ ̸= 𝑝′′ and for all ob(𝑐) ∈ Obj,
((obj_id ∘ ob)(𝑐), (dc_id ∘ dc)(𝑐), (cpq ∘ 𝑝𝑟 ∘ ob)(𝑐)) ∈ 𝑀(𝑝)
∧ (cc ∘ pdc)(𝑐) ∈ 𝑀(𝑝′)
∧ (ncc ∘ pdc)(𝑐) ∈ 𝑀(𝑝′′)}

(1)

where
⋂︀

is the intersection over sets of multi sets. Recall the colour sets of the
places Busy Objects, Starving Objects, Current Configuration and Current State.
The above function extracts information from ABS configurations and matches
that information to the colour of the tokens of those places appropriately. At the
second line of the equation, we have the information related to the tokens repre-
senting objects. They can be located either in Busy Objects or in Starving Objects
place (hence the existential quantifier of the equation). The third and the fourth
lines of the equation concern the deployment components and, in particular,
the resource distributions for either the current or the next time interval. This
information is also available at each ABS configuration, and hence the abstraction
function retrieves it and matches it with the tokens located in places Current State
and Current Configuration respectively.

Now, we can proceed to the correctness of the behaviour of our translation by
establishing an abstract weak simulation relation between program configurations
and CPN markings. For the full proof, see [20].

Theorem 1. The markings of the CPN model are in abstract (weak) simulation

relation with ABS program configurations.

Proof. (sketch) We need to prove that, for any program configuration 𝑐, if 𝑐 _𝑟 𝑐′

for some ABS semantic rule 𝑟, then there exists a marking in the net 𝑀 ′ and a
sequence of enabled transitions 𝑤, such that 𝛼(𝑐) 𝑤→ 𝑀 ′ and 𝛼(𝑐′) ⊆ 𝑀 ′ (where,
with ⊆ we denote the subset relation between sets of multi sets) ⊓⊔

6 Resource Analysis and Management

We now show how state space exploration of the CPN model can be used to
reason about starvation freedom of an ABS program. In presence of possible
starvation, we show the state space of the CPN model can be used to synthesise a
sequence of resource reconfigurations which can eliminate starvation. Finally, we
show how the sequence of resource reconfiguration can be used to automatically
obtain an implementation of a starvation free load balancer.

For the resource analysis, we rely on the model checker of CPN Tools applied
on an Intel i7 3.4 GHz. We use the running example from the previous sections for
illustration purposes, but our analysis approach generalises to instantiations of
the CPN model. The state space for the running example has 776 nodes (states)
and 1069 arcs (occurring events) and could be generated in less than 1 second.
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For our analysis, we also rely on the strongly connected components (SCCs) of
the state space. The SCCs could be generated in less than 1 second and contains
719 nodes (SCCs) and 988 arcs connecting the SCCs.

6.1 Resource Analysis

Section 4 covered the deployment layer as a CPN model. We obtained the
execution cost of a program by adding cost tags to the tokens representing the
active objects. More concretely, we matched each process of the process pool with
the corresponding cost. Recall that the colour of an active object is represented
as a triple (ob, dc, lst), where ob is the object identifier, dc is the deployment
component where the object is being executed, and lst is the process pool of the
objects. The latter is represented as a list of triples (proc, cost, bool) where proc

is the process identifier, cost is the related execution cost to the current process,
and bool is boolean flag indicating whether the process has fully executed (value
true) or not (value false). The head of lst represents the active process.

As shown in Fig. 7, the model has been constructed with place Current State
which record the resource availability of each deployment component by hosting
the corresponding tokens of colour (dc, cap), where dc is the deployment compo-
nent identifier and cap its resource capacity. In addition, the place Starving Objects
holds tokens representing the objects whose execution has been blocked because
of lack of resources at the current time interval. In the following, we explain in
detail how to perform resource analysis using the markings of those places.

The first important information related to resource management is whether
the current resource distribution provides sufficient resources for the full execution
of the processes the objects have in their process pools. In other words, we need
to check for starvation freedom. By model construction, place Starving Objects
keeps track of the starving objects, if any. For the analysis, we implement the
following Standard ML queries in CPN Tools for checking starvation freedom:

fun findStarvingObjects n =
let

val mSO = Mark.Process_Execution’Starving_Objects_p9 1 n
val soid = List.map (fn (ao,_,_) => ao) mSO

in soid end

fun anyStarving n = (findStarvingObjects n) <> nil
fun anySO () = PredAllNodes anyStarving

Function findStarvingObjects takes a state (marking) 𝑛 as argument and extract
the list of object identifiers from any tokens on place Starving Objects. Such object
identifiers represent objects that are starving in state 𝑛. This function is then
used in the predicate anyStarving which can be used to determine whether or
not there are any starving objects in state 𝑛. The anyStarving predicate is then
used as a higher-order argument to the built-in query function PredAllNodes
which returns the list of all those states where the anyStarving predicate holds,
i.e., all states where there are some object starving.
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For our running example, CPN Tools returns a non-empty list containing
several states which imply that starvation is possible. Since the current resource
distribution may lead to starvation, an interesting question is whether there exists

a resource reallocation strategy leading to starvation freedom. For that, we need
to check for the existence of any terminal SCC containing states where there are
no starving objects and then ask for a path leading to that state. This involves
writing queries of similar complexity as was shown above and consists of:

– a function that checks whether a SCC is non-starving, i.e. whether it consist
of only states where the marking of place Starving Objects is empty.

– a function searching for a non-starving SCC among the terminal SCCs ones.
– a function that returns the path from the initial marking to a state in one

on the non-starving terminal SCCs.

In the last case, we are interested only in the information related to resource
transfer. Recall that the module Component Reconfiguration (see Fig. 6) is re-
lated to the resource refill, and the Reconfigure transition related to the resource
transfer. We therefore filtered the path returned from CPN Tools to show only
the occurrences and binding elements of this transition, where the binding speci-
fies the values bound to the variables of the transition. This is the synthesised
sequence of the resource transfers we need to perform in order to avoid starvation.
For our running example, this resulted in the following sequence of resource
transfers:

[Component Reconfiguration‘Reconfigure
(1, {𝑏 = true, cap = 1, config = [(1, 1), (2, 2)], fromdc = 1, todc = 2})
(1, {𝑏 = true, cap = 3, config = [(1, 0), (2, 3)], fromdc = 2, todc = 1})
(1, {𝑏 = true, cap = 2, config = [(1, 3), (2, 0)], fromdc = 1, todc = 2})]

The first line shows the module and the transition of which we get the binding
elements. In the tuples that follow, "𝑏" is a guard of the transition, "cap" is
the amount of the resources we need to move, "config" is the current resource
distribution, "fromdc" is the source deployment component and "todc" is the
target deployment component. The resource transfer represented by the sequence
hence provides a non-starvation strategy.

6.2 Resource Management: Load Balancing

Above, we saw how the state space analysis of the CPN model can be used to
prove starvation freedom or, in case of possible starvation to synthesise a path
from the initial resource distribution to a starvation free state of a terminal SCC.
In the rest of this section, we will see how this path can be used in load balancing.

Recall that in ABS, the discrete time follows maximal progress semantics: the
time advances when no further execution can happen. In that case, the resources
are refilled according to the transfer command, if any; otherwise they are updated
as in the previous time interval. Recall also that the colour of the deployment
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components is (dc, cap) where the first element is the deployment component
identifier and the second one its capacity. As an example, the pair (1, 2) means
that the deployment component 1 has a capacity of 2 resources.

Let us consider again our running example. Below follows a more detailed
version of the path discussed in Sect. 6.1. For the sake of simplicity, we present
only the name of the transition followed by the corresponding binding. The
enumeration in the left corresponds to the respective ABS time point:

[Imperative Layer(1, {𝑐𝑎𝑝 = 1, 𝑐𝑎𝑝1 = 2})
t =0 Resource Refill(1, config = [(1, 1), (2, 2), oldconfig = [(1, 1), (2, 2)]})

· · ·
Reconfigure(1, {𝑏 = true, cap = 1, config = [(1, 1), (2, 2)], fromdc = 1, todc = 2})
Reconfigure Done(1, {𝑏 = false})

t=1 Resource Refill(1, config = [(1, 0), (2, 3), oldconfig = [(1, 0), (2, 0)]})
· · ·
Reconfigure Done(1, {𝑏 = true})

t=2 Resource Refill(1, config = [(1, 0), (2, 3), oldconfig = [(1, 0), (2, 0)]})
· · ·
Reconfigure(1, {𝑏 = true, cap = 3, config = [(1, 0), (2, 3)], fromdc = 2, todc = 1})
Reconfigure Done(1, {𝑏 = false})

t=3 Resource Refill(1, config = [(1, 3), (2, 0), oldconfig = [(1, 0), (2, 0)]})
· · ·
Reconfigure Done(1, {𝑏 = true})

t= 4 Resource Refill(1, config = [(1, 3), (2, 0), oldconfig = [(1, 0), (2, 0)]})
· · ·
Reconfigure(1, {𝑏 = true, cap = 2, config = [(1, 3), (2, 0)], fromdc = 1, todc = 2})]
Reconfigure Done(1, {𝑏 = false})

t=5 Resource Refill(1, config = [(1, 1), (2, 2), oldconfig = [(1, 1), (2, 0))]

In the above path, the highlighted lines are resource transfers that will lead
to a starvation free state, as we saw in Sect. 6.1. In our example, we consider
two objects located in two deployment components. The first line shows the
resource initialisation. The variables 𝑐𝑎𝑝 and 𝑐𝑎𝑝1 refer, respectively, to the
capacities of the first and the second deployment component. Hence we obtain
the initial distribution: (1, 1), (2, 2). During the first time interval, the highlighted
line shows that we need to transfer 1 resource (variable 𝑐𝑎𝑝) from the first
deployment component (variable fromdc) to the second one (variable todc). Here,
we notice that the variables are local to each transition, hence a possible name
reuse (e.g. 𝑐𝑎𝑝) should not create confusion. As a result of the first transfer, we
obtain the distribution (1, 0), (2, 3), as we can see at the corresponding resource
refill (variable config) of the beginning of the second time interval (when 𝑡 = 1).
During the second time interval, we do not need to transfer resources, hence
the refill of the beginning of the third time interval (when 𝑡 = 2) updates the
resources according to the last distribution, i.e. (1, 0), (2, 3). Similarly, we obtain
the distributions (1, 3), (2, 0) when 𝑡 = 3, (1, 3), (2, 0) when 𝑡 = 4 (no transfer)
and (1, 1), (2, 2) when 𝑡 = 5.

The variable oldconfig of the transition Resource Refill shows the available
resources that we have before time advances. Because of the maximal progress
semantics of ABS, the second component of each pair should be zero in all the
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1 class Balancer(DC telcomp, DC smscomp) {

2 Unit run() {

3 telcomp!transfer(smscomp,1);

4 await duration(2,2);

5 smscomp!transfer(telcomp, 3);

6 await duration(2,2);

7 telcomp!transfer(smscomp,2);

8 }}

9 {// Main block
10 . . . // deployment components, etc. as before
11 new Balancer(telcomp,smscomp);

12 }

Fig. 8. Implementation of Load Balancer.

time intervals except the extremal ones: the first is the initialisation and the last
one shows that we have remaining 1 resource at the first deployment component
after the full execution of the processes of the first object. This is possible since
the last state is starvation free.

From the above path information we can implement very easily a load balancer
like the one of Fig. 8. We match object "1" with the telephone service and object
"2" with the SMS service and we assume they are located at the deployment
components "telcomp" and "smscomp", respectively, having the capacities as in
the model, i.e. 1 and 2. In our load balancer we applied the strategy given by the
path explained above, so we transfer 1 resource from the deployment component
"telcomp" to the "smscomp" during the first time interval, 3 resources from the
deployment component "smscomp" to the "telcomp" during the third time interval,
and 2 resources from the deployment component "telcomp" to the "smscomp"
during the fourth time interval. Notice here that each time we transfer resources,
they take place at the next time interval according to the semantics of ABS.

7 Conclusions and Related Work

We have presented a CPN model of the deployment fragment of ABS [29], a
resource aware programming language suitable for cloud applications. A key
characteristics of our approach is that the compact modelling supported by CPNs
allowed us to develop a CPN model capable of simulating any ABS program by
only changing the initial marking. The main benefit of our approach is the ability
to use model checking techniques to identify starvation of resource aware active
objects, and to synthesise reconfiguration sequences that eliminates starvation and
which in turn can be used to automatically obtain load-balancer implementations.

Some of the earliest applications of CPNs for analysis of distributed objects
appeared in [30] focussing on spatial distribution of objects and not resource
consumption. Early work [35] also considered simulation-based capacity planning
of web-servers, but not in a context with dynamically configurable resources.
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CPNs have also recently been used to analyze deadlock situatiuons for active
objects with futures by de Boer et al. [10, 11] and by the authors [19], as found in
the ABS language. More recent work [14] has considered the COSTA language [3]
for deployment and management of cloud applications. Their work, however,
focused on the deployment language and management operations. COSTA is able
to approximate the computational cost of a program, but do not provide resource
management. Recent work [23] has also explored evaluation of cloud deployment
strategies for distributed NoSQL databases using CPN simulation, but without
dynamic reconfiguration. In contrast to previous modelling of programming
languages into Petri nets like Ada, Java, Orc ( [24] [32] [15]) where the model
depends on the program, we suggest a fixed sized model where the markings are
program configuration abstractions, hence different programs can be analysed
by one single model upon different initialisation (according to the abstraction
function).

More broadly, process algebras [7], priced [13] and probabilistic [6] automata
have been proposed for performance analysis of embedded systems with resource
constraints. Also, other resource analysis on resource aware programs like [34]
and [21], target to guarantee that the program cost does not exceed a resource
threshold. Our work is not restricted only to the guarantee of resource sufficiency,
but also in case of possible starvation, proposes strategies for vertical scaling that
can be retrieved by the counter examples of CPN Tools.

Our present work extends [19] by taking as input the communication status of
resource aware active objects and performing resource analysis. We demonstrated
how to statically construct a load balancer. A direction for future work will be
to extend the model to support dynamic load balancing and investigate optimal
vertical scaling using the CPN model checker. Another direction will be to perform
a comprehensive experimental evaluation on a larger set of ABS programs.
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