Transfinite mean value interpolation

Christopher Dyken and Michael Floater

Centre of Mathematics for Applications,
Department of Informatics,
University of Oslo
Transfinite interpolation

Given \(\Omega \subset \mathbb{R}^2 \), a convex or non-convex set, possibly with holes.

Lagrange transfinite interpolation
We are given \(f : \partial \Omega \to \mathbb{R} \).
Find \(g : \Omega \to \mathbb{R} \) that interpolates \(f \) on \(\partial \Omega \).

Hermite transfinite interpolation
We are given \(f : \partial \Omega \to \mathbb{R} \) and \(\frac{\partial f}{\partial n} : \partial \Omega \to \mathbb{R} \).
Find \(g : \Omega \to \mathbb{R} \) that interpolates \(f \) and \(\frac{\partial g}{\partial n} \) matches \(\frac{\partial f}{\partial n} \) on \(\partial \Omega \).

- Lagrange can be solved by solving the harmonic equation
- Hermite can be solved by solving the biharmonic equation

\[\longrightarrow \text{ But we want something simpler...} \]

Let

- \(x \) be a point inside the convex set \(\Omega \);
- \(Q(x, \theta) \) be the **infinite** line through \(x \) in the direction \(\theta \).
- Let \(p_1(x, \theta) \) and \(p_2(x, \theta) \) be the two intersections between \(Q(x, \theta) \) and \(\partial \Omega \),

then we define

\[
g_{GW}(x) = \frac{1}{2\pi} \int_0^{2\pi} \text{lerp} \left(f(p_1(x, \theta)), f(p_2(x, \theta)), \frac{\|p_1(x, \theta) - x\|}{\|p_1(x, \theta) - p_2(x, \theta)\|} \right) d\theta.
\]

- Works only for convex sets.
- Evaluation requires numerical integration

\[\text{\rightarrow must find intersections for each integration point!}\]
A mean value approach

Let

- \(L(x, \theta) \) be the semi-infinite line originating at \(x \) in the direction \(\theta \).
- \(p(x, \theta) \) be the intersection of \(L(x, \theta) \) and \(\partial \Omega \).

and define the “radially linear” function \(F \) as

\[
F(x + r(\cos \theta, \sin \theta)) = \text{lerp} \left(g(x), f(p(x, \theta)), \frac{r}{\|p(x, \theta) - x\|} \right).
\]
We want F to satisfy the Mean Value property at x.
Let Γ be any circle at x with radius r, then

$$F(x) = \frac{1}{2\pi r} \int_{\Gamma} F(z) \, dz,$$

whose unique solution is

$$g(x) = \frac{1}{\phi(x)} \int_{0}^{2\pi} \frac{f(p(x, \theta))}{\|p(x, \theta) - x\|} \, d\theta, \quad \phi(x) = \int_{0}^{2\pi} \frac{1}{\|p(x, \theta) - x\|} \, d\theta,$$

which is the “angle integral” formula for the MV interpolant g.

- Generalizes to non-convex sets
- Evaluation still requires numerical integration.
- Still must find an intersection for each integration point!
- How do we differentiate this thing?
- Luckily, we have two other formulas...
The boundary integral formula [Ju, Schaefer, Warren 2005]

Suppose $\mathbf{c} : [a, b] \to \mathbb{R}^2$ is an anticlockwise representation of $\partial \Omega$.

Then

$$
\frac{d\theta}{dt} = \frac{(\mathbf{c}(t) - \mathbf{x}) \times \mathbf{c}'(t)}{\|\mathbf{c}(t) - \mathbf{x}\|^2}
$$

which gives

$$
\phi(\mathbf{x}) = \int_a^b \frac{(\mathbf{c}(t) - \mathbf{x}) \times \mathbf{c}'(t)}{\|\mathbf{c}(t) - \mathbf{x}\|^3} dt,
$$

and

$$
g(\mathbf{x}) = \frac{1}{\phi(\mathbf{x})} \int_a^b \frac{(\mathbf{c}(t) - \mathbf{x}) \times \mathbf{c}'(t)}{\|\mathbf{c}(t) - \mathbf{x}\|^3} f(\mathbf{c}(t)) dt.
$$
The polygonal formula

Suppose Ω is a polygon with vertices p_1, \ldots, p_n.

Then

$$g(x) = \frac{1}{\phi(x)} \sum_i w_i(x) f(p_i),$$

where

$$\phi(x) = \sum_i w_i(x),$$

and

$$w_i(x) = \frac{\tan(\alpha_{i-1}(x)/2) + \tan(\alpha_i(x)/2)}{\|p_i - x\|}. $$
We have three formulations for the MV interpolant:

- **The polygonal formula:**
 - closed form
 - easy to find expressions for derivatives.

- **The boundary integral formula**
 - needs adaptive numerical quadrature for evaluation.
 - easy to find expressions for derivatives.

- **The angle integral**
 - describes the interpolant along a particular direction.
The MV weight function

A lot of properties can be deduced from the “weight function” ψ

\[
\psi(x) = \frac{1}{\phi(x)} = 1 \left/ \int_0^{2\pi} \frac{1}{\|p(x, \theta) - x\|} d\theta, \right.
\]

\[
= 1 \left/ \int_a^b \frac{(c(t) - x) \times c'(t)}{\|c(t) - x\|^3} dt, \right.
\]

\[
= 1 \left/ \sum_i \frac{\tan(\alpha_{i-1}(x)/2) + \tan(\alpha_i(x)/2)}{\|p_i - x\|}. \right.
\]
Minimum principle for ψ

For arbitrary Ω, we have that

$$\Delta \phi(x) = 3 \int_0^{2\pi} \sum_{j=1}^{n(x, \theta)} \frac{(-1)^{j-1}}{\|p_j(x, \theta) - x\|^3} \, d\theta$$

from which follows that

- ψ has no local minima in Ω.

$$\Delta \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}$$
Bounds on ψ

For all $x \in \Omega$ we have that

$$\frac{1}{2\pi} \text{dist}(x, \partial \Omega) \leq \psi(x) \leq c \text{dist}(x, \partial \Omega),$$

- c depends on $\text{dist}(M_E, \partial \Omega)$, the distance between $\partial \Omega$ and its exterior medial axis
- If Ω is convex, then $c = \frac{1}{2}$.

\Rightarrow For all $x \in \Omega$, $\psi > 0$.

The plot shows the upper and lower bounds and ψ along a cross-section when Ω is the unit disc.
Proof of interpolation for the Lagrange MV interpolant

If

- f is continuous,
- $\partial \Omega$ and any line intersects a bounded number of times,
- and $\text{dist}(M_E, \partial \Omega) > 0$

then

- g interpolates f.
Normal derivatives of ψ and g

If
\[
\text{dist}(M_E, \partial \Omega) > 0 \quad \text{and} \quad \text{dist}(M_I, \partial \Omega) > 0,
\]
then, for all $y \in \partial \Omega$,

- the inward normal derivative for ψ is
 \[
 \frac{\partial \psi}{\partial n}(y) = \frac{1}{2}
 \]

- the inward normal derivative for the Lagrange interpolant g is
 \[
 \frac{\partial g}{\partial n}(y) = \frac{1}{2} \int_a^b \frac{(c(t) - y) \times c'(t)}{\|c(t) - x\|^3} (f(c(t)) - f(y)) \, dt.
 \]
Hermite mean value interpolation

In one variable, we have the problem

\[p(x_i) = f(x_i) \quad \text{and} \quad p'(x_i) = f'(x_i), \quad i = 0, 1. \]

One approach of expressing \(p \) is

\[p(x) = g_0(x) + \psi(x)g_1(x), \]

where

- \(g_0 \) and \(g_1 \) are Lagrange interpolants,
- \(\psi \) vanishes at \(x_0 \) and \(x_1 \) and \(\psi' \) is nonzero at \(x_0 \) and \(x_1 \).

Which gives the conditions

\[g_0(x_i) = f(x_i) \quad \text{and} \quad g_1(x_i) = \frac{f'(x_i) - g_0'(x_i)}{\psi'(x_i)}. \]
In two variables, we can generalize a similar problem,

\[p(y) = f(y) \quad \text{and} \quad \frac{\partial p}{\partial n}(y) = \frac{\partial f}{\partial n}(y), \quad y \in \partial \Omega. \]

and let \(p \) be on the form

\[p(x) = g_0(x) + \psi(x)g_1(x). \]

We can use the MV-\(\psi \) since

\[\psi(y) = 0 \quad \text{and} \quad \frac{\partial \psi}{\partial n}(y) = \frac{1}{2}, \quad y \in \partial \Omega, \]

and let \(g_0 \) and \(g_1 \) be MV Lagrange interpolants.
Then, for \(y \in \partial \Omega \) we get the conditions

\[
g_0(y) = f(y)
\]

\[
g_1(y) = \left(\frac{\partial f}{\partial n}(y) - \frac{\partial g_0}{\partial n}(y) \right) / \frac{\partial \psi}{\partial n}(y).
\]
Application: Smooth mappings

Reference shape Computational domain

(MV-Lagrange)

Conjecture: Lagrange interpolation from convex sets to convex sets is always injective.
Application: WEB-splines [Höllig, Reif, Wipper 2001]

Idea: Use ψ as a weight function for WEB-splines

- Parametric circle
- Two nested ellipses
- Polygon
- Piecewise cubic Bézier curve
Solution to Poisson’s equation using bicubic web-splines

Using implicit weight function

<table>
<thead>
<tr>
<th>Grid</th>
<th>L2 error</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>10×8</td>
<td>$7.3 \text{e}-02$</td>
<td></td>
</tr>
<tr>
<td>20×16</td>
<td>$2.9 \text{e}-02$</td>
<td>1.31</td>
</tr>
<tr>
<td>40×32</td>
<td>$1.6 \text{e}-03$</td>
<td>4.21</td>
</tr>
<tr>
<td>80×64</td>
<td>$4.4 \text{e}-05$</td>
<td>5.17</td>
</tr>
</tbody>
</table>

Using MV weight function

<table>
<thead>
<tr>
<th>Grid</th>
<th>L2 error</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>10×8</td>
<td>$9.5 \text{e}-02$</td>
<td></td>
</tr>
<tr>
<td>20×16</td>
<td>$4.1 \text{e}-02$</td>
<td>1.21</td>
</tr>
<tr>
<td>40×32</td>
<td>$2.4 \text{e}-03$</td>
<td>4.12</td>
</tr>
<tr>
<td>80×64</td>
<td>$1.4 \text{e}-04$</td>
<td>4.01</td>
</tr>
</tbody>
</table>
Inhomogeneous Poisson’s equation

True solution

MV Lagrange interpolant

Homogeneous solution

Inhomogeneous solution
Conclusions

▶ The **Lagrange mean value interpolant** does in fact interpolate.
▶ Constructed a **Hermite mean value interpolant**.
▶ The **mean value weight function** has nice properties:
 ▶ positive;
 ▶ C^∞-smooth;
 ▶ bounded by the distance function:
 \mapsto a very smooth distance-like function without ridges along the inner medial axis!
 ▶ constant normal derivate;
 ▶ has no local minima in Ω;
▶ The mean value constructions are relatively easy to compute:
 ▶ The polygonal case has a closed form.
 ▶ The boundary integral must be calculated numerically, but:
 ▶ Strong influence of the boundary region closest to the point of evaluation.
 \mapsto Adaptivity pays off.
 ▶ Simpler than solving a PDE.
Thank you for listening!

Questions?