Sequences

"Sequences" is a central topic in mathematics:

\[x_0, x_1, x_2, \ldots, x_n, \ldots \]

Example: all odd numbers

1, 3, 5, 7, \ldots, 2n+1, \ldots

For this sequence we have a formula for the \(n \)-th term:

\[x_n = 2n + 1 \]

and we can write the sequence more compactly as

\[(x_n)_{n=0}^\infty \quad x_n = 2n + 1 \]

Other examples of sequences

1, 4, 9, 16, 25, \ldots \quad (x_n)_{n=0}^\infty \quad x_n = n^2

1, 1, 1, 1, \ldots \quad (x_n)_{n=0}^\infty \quad x_n = \frac{1}{n+1}

1, 1, 2, 6, 24, \ldots \quad (x_n)_{n=0}^\infty \quad x_n = n!

1, 1 + x, 1 + x + \frac{1}{2}x^2, 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3, \ldots \quad (x_n)_{n=0}^\infty \quad x_n = \sum_{j=0}^n \frac{x^j}{j!}

Finite and infinite sequences

Infinite sequences have an infinite number of terms \((n \to \infty) \)

In mathematics, infinite sequences are widely used

In real-life applications, sequences are usually finite \((x_n)_{n=0}^N\)

Example: number of approved exercises every week in INF1100

\[x_0, x_1, x_2, \ldots, x_15 \]

Example: the annual value of a loan

\[x_0, x_1, \ldots, x_24 \]

Difference equations

For sequences occurring in modeling of real-world phenomena, there is seldom a formula for the \(n \)-th term

However, we can often set up one or more equations governing the sequence

Such equations are called difference equations

With a computer it is then very easy to generate the sequence by solving the difference equations

Difference equations have lots of applications and are very easy
to solve on a computer, but often complicated or impossible to solve for \(x_n \) (as a formula) by pen and paper!

The programs require only loops and arrays

Modeling interest rates

Put \(x_0 \) money in a bank at year 0. What is the value after \(N \) years

if the interest rate is \(p \) percent per year?

The fundamental information relates the value at year \(n \), \(x_n \), to
the value of the previous year, \(x_{n-1} \):

\[x_n = x_{n-1} + \frac{p}{100}x_{n-1} \]

Solution by simulation:

\[x_{n+1} = x_n + \frac{p}{100}x_n \]

The programs require only loops and arrays

Simulating the difference equation for interest rates

Simulate = solve math equations by repeating a simple procedure
(relation) many times (boring, but well suited for a computer)

Let us make a program for

\[x_n = x_{n-1} + \frac{p}{100}x_{n-1} \]

from scitools.std import *

\# initial amount

x0 = 100

\# interest rate

p = 5

\# number of years

N = 4

\# solve the equation

x = zeros(len(index_set))

\# solution:

x[0] = x0

for n in index_set[1:]:

x[n] = x[n-1] + (p/100.0)*x[n-1]

print x

plot(index_set, x, 'ro', xlabel='years', ylabel='amount')

Note about the use of arrays

We store the \(x_n \) values in a NumPy array.

To compute \(x_n \), we only need one previous value, \(x_{n-1} \).

Thus, for the computations we do not need to store all
the previous values, i.e., we do not need any array, just two numbers:

\[x_{\text{new}} = x_{\text{old}} \]

\[x_{\text{new}} = x_{\text{old}} + \left(\frac{p}{100}\right)x_{\text{old}} \]

\[x_{\text{new}} = x_{\text{new}} \]

\[x_{\text{old}} = x_{\text{old}} \]

However, programming with an array \([x]\) is simpler, safer, and enabes plotting the sequence, so we will continue to use arrays in the examples
Daily interest rate

A more relevant model is to add the interest every day.
The interest rate per day is \(r = p/D \) if \(p \) is the annual interest rate and \(D \) is the number of days in a year.

A common model in business applies \(D = 360, \) but \(n \) counts exactly (all days).

New model:

\[
x_n = x_{n-1} + \frac{r}{100} x_{n-1}
\]

How can we find the number of days between two dates?

```python
>>> import datetime
>>> date1 = datetime.date(2007, 8, 3) # Aug 3, 2007
>>> date2 = datetime.date(2008, 8, 4) # Aug 4, 2008
>>> diff = date2 - date1
>>> print diff.days
365
```

Payback of a loan

A loan \(I \) is paid back with a fixed amount \(I/N \) every month over \(N \) months + the interest rate of the loan.

Let \(p \) be the annual interest rate and \(p/12 \) the monthly rate.

Let \(x_n \) be the value of the loan at the end of month \(n \).

The fundamental relation from one year to the other:

\[
x_n = x_{n-1} + \frac{p}{12 \times 100} x_{n-1} - \left(\frac{p}{12 \times 100} \right) I
\]

which simplifies to

\[
x_n = x_{n-1} - \frac{I}{N}
\]

(The constant term \(I/N \) makes the equation nonhomogeneous, while the previous interest rate equation was homogeneous (all terms contain \(x_n \) or \(x_{n-1} \)).)

The programming is left as an exercise.

But the annual interest rate may change quite often...

This is problematic when computing by hand.

In the program, a varying \(p \) is easy to deal with.

Just fill an array \(p \) with correct annual interest rate for day no. \(n \), \(n=0, \ldots, N \) (this can be a bit challenging).

Modified program:

```python
p = zeros(len(index_set)) # fill p[n] for n in index_set
r = p/360.0 # daily interest rate
x = zeros(N+1, int) # x = zeros(len(index_set))

for n in index_set[1:]:
    x[n] = x[n-1] + (r[n]/100.0) * x[n-1]

x0 = 100 # initial amount
x = x + x
```

How can we find the number of days between two dates?

```python
>>> import datetime
>>> date1 = datetime.date(2007, 8, 3) # Aug 3, 2007
>>> date2 = datetime.date(2008, 8, 4) # Aug 4, 2008
>>> diff = date2 - date1
>>> print diff.days
365
```

How to make a living from a fortune (part 1)

We have a fortune \(F \) invested with an annual interest rate of \(p \) percent.

Every year we plan to consume an amount \(c_n \) (in counts years)

Let \(x_n \) be the development of our fortune.

A fundamental relation from one year to the other is

\[
x_n = x_{n-1} + \frac{p}{100} x_{n-1} - c_n
\]

Simplest possibility: keep \(c_n \) constant

Drawback: inflation demands \(c_n \) to increase...

How to make a living from a fortune (part 2)

Assume \(p \) percent inflation per year and that \(c_n \) is \(g \) percent of the interest the first year.

\(c_n \) then develops as money with interest rate \(I \), and \(x_n \) develops with rate \(p \) but with a loss \(c_n \) every year:

\[
x_n = x_{n-1} + \frac{p}{100} x_{n-1} - c_{n-1}, \quad x_0 = F, \quad c_n = \frac{g}{100} F
\]

This is a coupled system of two difference equations.

The programming is still simple: we update two arrays \(x[n], c[n] \) inside the loop.

Fibonacci numbers; mathematics

No programming or math course is complete without an example on Fibonacci numbers!

Fibonacci derived the sequence by modeling rat populations, but the sequence of numbers has a range of peculiar mathematical properties and has therefore attracted much attention from mathematicians.

The difference equation reads

\[
x_n = x_{n-1} + x_{n-2}, \quad x_0 = 1, \quad x_1 = 1
\]

This is a homogeneous difference equation of second order (three levels: \(n, n-1, n-2 \)) -- this classification is important for mathematical solution technique, but not for simulation in a program.

Fibonacci numbers; program

```python
from scipy.linalg import solve
from numpy import zeros

N = int(sys.argv[1])
for n in range(2, N+1):
    x[n] = x[n-1] + x[n-2]
print x[N]
```
Fibonacci numbers and overflow (part 1)

- Run the program with $N = 50$:

  ```python
  N = int(sys.argv[1])
  x_0 = 1
  x_1 = 1
  while n <= N:
    x_2 = x_1 + x_0
    x_0 = x_1
    x_1 = x_2
    print 'x_%d = %d' % (n, x_2)
  ```

- The model for growth of money in a bank has a solution of the type $x_n = x_0 e^{r n}$, where $0 < r < 1$

- Exponential growth with limited resources

 The model for growth of money in a bank has a solution of the type $x_n = x_0 e^{r n}$, where $0 < r < 1$

 - Best: use Python scalars of type int – these automatically change to long when overflow in int
 - The long type in Python has arbitrarily many digits (as many as required in a computation)
 - Note: long for arrays is 64 bit integer (int64), while scalar long in Python is an integer with as "infinitely" many digits

Program with Python's long type for integers

- The program now avoids arrays and makes use of three int objects (which automatically changes to long when needed):

  ```python
  N = int(sys.argv[1])
  x_0 = 1
  x_1 = 1
  x_2 = x_1 + x_0
  print 'x_%d = %d' % (n, x_2)
  ```

- Can change int to long or int64 for array elements - now we can generate numbers up to $N = 91$ before we get overflow and garbage

- Can use float96 despite the fact that x_n are integers (float gives only approximatively correct numbers) – now N up to 23600 is possible

Exponential growth with limited resources

- The model for growth of money in a bank has a solution of the type $x_n = x_0 e^{r n}$

 This is exponential growth in time (t)

- Populations of humans, animals, and cells also exhibit the same type of growth as long as there are unlimited resources (space and food)

- The environment can only support a maximum number M of individuals

- How can we model this?

- We shall introduce a logistic model

Modeling logistic growth

- Initially, when there are enough resources, the growth is exponential:

 $$ x_n = x_{n-1} \left(\frac{r}{M} \right)^{n-1} $$

- The growth rate r must decay to zero as x_n approaches M

- A very simple $r(n)$ function with this behavior is

 $$ r(n) = \frac{x_n}{M} $$

- Observe that $r(n) \approx 0$ for small n when $x_n << M$, and $r(n) \to 0$ as $x_n \to M$ and n is big

- The model for limited growth, called logistic growth, is then

 $$ x_n = x_{n-1} + \frac{r}{M} x_{n-1} - \frac{x_{n-1}}{M} $$

The factorial as a difference equation

- The factorial $n!$ is defined as $n(n-1)(n-2) \cdots 1 (0! = 1)$

- The following difference equation has $n!$ as solution and can be used to compute the factorial:

 $$ x_n = n x_{n-1}, \quad x_0 = 1 $$

Taylor series as difference equations

- The Taylor series for e^r reads

 $$ e^r = \sum_{n=0}^{\infty} \frac{r^n}{n!} $$

- We can formulate this series as two coupled difference equations (and solving these difference equations is (probably) the most efficient way to compute the Taylor series):!

 $$ a_n = \frac{r}{n-1}, \quad a_0 = 1 $$

 $$ e_n = a_{n-1} + a_n, \quad e_0 = 1 $$

- See the book for how to solve the difference equations by hand and show that the solution is the Taylor series for e^r
Newton’s method for finding zeros

Newton’s method for solving \(f(x) = 0 \) reads

\[
X_n = X_{n-1} - \frac{f(X_{n-1})}{f'(X_{n-1})}, \quad x_0 \text{ given}
\]

This is a (nonlinear!) difference equation

As \(n \to \infty \), we hope that \(x_n \to x \), where \(x \) solves \(f(x) = 0 \)

Now we will not simulate \(N \) steps, because we do not know how large \(N \) must be in order to have \(x_n \) as close to the exact solution \(x \) as we want.

The program is therefore a bit different: we simulate the difference equation as long as \(f(x) > \epsilon \), where \(\epsilon \) is small.

However, Newton’s method may (easily) diverge, so to avoid simulating forever, we stop when \(n > N \)

A better program for Newton’s method

Only one \(f(x) \) call in each iteration, optional storage of \((x, f(x))\) values during the iterations, and float division:

\[
\text{def Newton(f, x, dfdx, epsilon=1.0E-7, N=100, store=False):}
\]

\[
f_value = f(x)
\]

\[
\text{if store: info = [(x, f_value)]}
\]

\[
\text{while abs(f_value) > epsilon and n <= N:}
\]

\[
\quad x = x - \frac{f_value}{dfdx(x)}
\]

\[
\quad f_value = f(x)
\]

\[
\text{if store: info = info.append((x, f_value))}
\]

\[
\text{return x, info}
\]

\[
\text{else: return x, n, f_value}
\]

Application of Newton’s method

Example: solve \(x - 0.14^2 \sin(\frac{\pi}{2}x) = 0 \)

\[
\text{from sympy import sin, pi, exp,untos}
\]

\[
\text{def g(x): return -0.1*exp(-0.1*x**2)*sin(pi/2*x) + exp(-0.1*x**2)*cos(pi/2*x)}
\]

\[
\text{def dg(x): return -2*0.1*x*exp(-0.1*x**2)*sin(pi/2*x) + 2*0.1*x*exp(-0.1*x**2)*cos(pi/2*x)}
\]

\[
\text{def Newton(f, x, dfdx, epsilon=1.0E-7, N=100, store=False):}
\]

\[
\text{f_value = f(x)}
\]

\[
\text{if store: info = [(x, f_value)]}
\]

\[
\text{while abs(f_value) > epsilon and n <= N:}
\]

\[
\quad x = x - float(f_value)/dfdx(x)
\]

\[
\quad f_value = f(x)
\]

\[
\quad if store: info = info.append((x, f_value))
\]

\[
\text{return x, info}
\]

Results from this test problem

Start value 1.7:

Zero: 1.999999999768449

Iteration 0: f(1.7)=3.40446

Iteration 1: f(1.7)=3.40446

Iteration 2: f(1.7)=3.40446

This works fine!

Start value 3:

Zero: 42.49723316011362

Iteration 1: f(3)=0.0981146

Iteration 2: f(3)=0.0981146

WHAT???

Lesson learned: Newton’s method may work fine or give wrong results! You need to understand the method to interpret the results!

Programming with sound

Sound on a computer = sequence of numbers

Example: A 440 Hz tone

\[
s(t) = A \sin(2 \pi f t)
\]

\[
f = 440
\]

This tone is a sine wave with frequency 440 Hz:

\[
s(t) = \text{A sin}(2 \pi f t)
\]

\[
f = 440
\]

On a computer we represent \(s(t) \) as a sequence of numbers:

\[
f(t) \text{ is evaluated twice in each pass of the loop – only one evaluation is strictly necessary (can store the value in a variable and reuse it)}
\]

Note: \(f(t) / df(t) \) can give integer division

Note: it could be handy to have an option for storing the \(x \) and \(f(x) \) values in each iteration (for plotting or printing a convergence table)

Making a sound file with single tone (part 1)

\[
r: \text{ sampling rate (samples per second, default 44100)}
\]

\[
f: \text{ frequency of the tone}
\]

\[
x: \text{ duration of the tone (seconds)}
\]

\[
e: \text{ Sampled sine function for this tone:}
\]

\[
x_n = A \sin \left(\frac{2\pi fn}{r} \right), \quad n = 0, 1, \ldots, n - r
\]

\[
\text{Code (we use descriptive names: frequency=f, length=x, amplitude=A, sample_rate=r):}
\]

\[
\text{import numpy}
\]

\[
\text{def note(frequency, length, amplitude=1, sample_rate=44100):}
\]

\[
\text{time_points = numpy.linspace(0, length, length+sample_rate)}
\]

\[
\text{data = amplitude_data}
\]

\[
\text{return data}
\]

Making a sound file with single tone (part 2)

We have data as an array with float and unit amplitude

\[
\text{Sound data in a file should have 2-byte integers (int16) as data elements and amplitudes up to 2^{15} – 1 (max value for int16 data)}
\]

\[
\text{data = note(440, 2)}
\]

\[
\text{data = data.astype(int16)}
\]

\[
\text{max_amplitude = 2^{15} - 1}
\]

\[
\text{data = max_amplitude_data}
\]

\[
\text{import scitools.sound}
\]

\[
\text{scitools.sound.write(data, 'Atom.wav')}
\]

\[
\text{scitools.sound.play('Atom.wav')}
\]
Reading sound from file

Let us read a sound file and add echo

Sound = array s[n]

Echo means to add a delay of the sound

\[\text{Echo: } e[n] = \beta s[n] + (1-\beta)s[n-b] \]

def add_echo(data, beta=0.8, delay=0.002, sample_rate=44100):
 newdata = data.copy()
 shift = int(delay*sample_rate) # b (math symbol)
 for i in xrange(shift, len(data)):
 newdata[i] = beta*data[i] + (1-beta)*data[i-shift]
 return newdata

Load data, add echo and play:

data = scitools.sound.read(filename)
data = data.astype(float)
data = add_echo(data, beta=0.6)
data = data.astype(int16)
scitools.sound.play(data)

Playing many notes

Each note is an array of samples from a sine with a frequency corresponding to the note

Assume we have several note arrays data1, data2, ...

The start of “Nothing Else Matters” (Metallica):

\[
\begin{align*}
 E1 &= \text{note}(164.81, .5) \\
 G &= \text{note}(392, .5) \\
 B &= \text{note}(493.88, .5) \\
 E2 &= \text{note}(659.26, .5) \\
 \text{intro} &= \text{numpy.concatenate}(E1, G, B, E2, G) \\
 \text{song} &= \text{numpy.concatenate(intro, intro, ...)} \\
 \text{scitools.sound.play(song)} \\
 \text{scitools.sound.write(song, 'tmp.wav')}
\end{align*}
\]

Summary of difference equations

Sequence: \(x_0, x_1, x_2, \ldots, x_n, \ldots \)

Difference equation: relation between \(x_n, x_{n-1} \), and maybe \(x_{n-2} \)
(or more terms in the "past") + known start value \(x_0 \) (and more values \(x_1, \ldots \) if more levels enter the equation)

Solution of difference equations by simulation:

For \(n \) in index_set[1:]:
 \(x[n] = \text{formula involving } x[n-1] \)

Can have (simple) systems of difference equations:

For \(n \) in index_set[1:]:
 \(x[n] = \text{formula involving } y[n-1] \)
 \(y[n] = \text{formula involving } x[n-1] \) and \(a[n] \)

Taylor series and numerical methods such as Newton’s method can be formulated as difference equations, often resulting in a good way of programming the formulas

Module file: soundeq.py

Look at files/soundeq.py for complete code. Try it out in these examples:

Unix/DOS> python soundeq.py oscillations 40
Unix/DOS> python soundeq.py logistic 100

Try to change the frequency range from 200 to 400.

Summarizing example: music of sequences

Given a \(x_0, x_1, x_2, \ldots, x_n, \ldots \)

Can we listen to this sequence as "music"?

Yes, we just transform the \(x_n \) values to suitable frequencies and use the functions in scitools.sound to generate tones

We will study two sequences:

\[
x_n = e^{-4n/N} \sin(8\pi n/N)
\]

and

\[
x_n = x_{n-1} + qx_{n-1} \left(1 - x_{n-1} \right)
\]

The first has values in \([-1, 1]\), the other from \(x_0 = 0.01 \) up to around 1

Transformation from "unit" \(x_n \) to frequencies:

\[
y_n = 440 + 200x_n
\]

(first sequence then gives tones between 240 Hz and 640 Hz)