
INF1100 Lectures, Chapter 1:
Computing with Formulas

Hans Petter Langtangen

Simula Research Laboratory

University of Oslo, Dept. of Informatics

September 06, 2011

Programming a mathematical formula

We will learn programming through examples

The first examples involve programming of formulas

Here is a formula for the position of a ball in vertical motion,
starting at y = 0 at time t = 0:

y(t) = v0t −
1

2
gt2

y is the height (position) as function of time t

v0 is the initial velocity (at t = 0)

g is the acceleration of gravity

Computational task: given v0, g and t, compute y

The program

What is a program?

A sequence of instructions to the computer, written in a
programming language, which is somewhat like English, but very
much simpler – and very much stricter!

In this course we shall use the Python language

Our first example program:

Evaluate y(t) = v0t − 1
2gt

2 for v0 = 5, g = 9.81 and t = 0.6:

y = 5 · 0.6− 1

2
· 9.81 · 0.62

Python program for doing this calculation:

print 5*0.6 - 0.5*9.81*0.6**2

How to write and run the program

A (Python) program is plain text

First we need to write the text in a plain text editor

Use Gedit, Emacs or IDLE (not MS Word or OpenOffice!)

Write the program line
print 5*0.6 - 0.5*9.81*0.6**2

Save the program to a file (say) ball numbers.py

(Python programs are (usually) stored files ending with .py)

Go to a terminal window

Go to the folder containing the program (text file)

Give this operating system command:
Unix/DOS> python ball_numbers.py

The program prints out 1.2342 in the terminal window

About programs and programming

When you use a computer, you always run a program

The computer cannot do anything without being precisely told
what to do, and humans write and use programs to tell the
computer what to do

Some anticipate that programming in the future may be as
important as reading and writing (!)

Most people are used to double-click on a symbol to run a
program – in this course we give commands in a terminal
window because that is more efficient if you work intensively
with programming

In this course we probably use computers differently from
what you are used to

Computers are very picky about grammar rules and typos

Would you consider these two lines to be ”equal”?
print 5*0.6 - 0.5*9.81*0.6**2
write 5*0.6 - 0.5*9.81*0.6^2

Humans will say ”yes”, computers ”no”

The second line has no meaning as a Python program

write is not a legal Python word in this context, and the hat
does not imply 0.62

We have to be extremely accurate with how we write
computer programs!

It takes time and experience to learn this

“People only become computer programmers if they’re obsessive about details,

crave power over machines, and can bear to be told day after day exactly how

stupid they are.” –G. J. E. Rawlins



Storing numbers in variables

From mathematics you are used to variables, e.g.,

v0 = 5, g = 9.81, t = 0.6, y = v0t −
1

2
gt2

We can use variables in a program too, and this makes the
last program easier to read and understand:

v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2
print y

This program spans several lines of text and use variables,
otherwise the program performs the same calculations and
gives the same output as the previous program

Names of variables

In mathematics we usually use one letter for a variable

In a program it is smart to use one-letter symbols, words or
abbreviation of words as names of variables

The name of a variable can contain the letters a-z, A-Z,
underscore and the digits 0-9, but the name cannot start
with a digit

Variable names are case-sensitive (e.g., a is different from A)

Example on other variable names in our last program:
initial_velocity = 5
accel_of_gravity = 9.81
TIME = 0.6
VerticalPositionOfBall = initial_velocity*TIME - \

0.5*accel_of_gravity*TIME**2
print VerticalPositionOfBall

(the backslash allows an instruction to be continued on the
next line)

Good variable names make a program easier to understand!

Some words are reserved in Python

Certain words have a special meaning in Python and cannot
be used as variable names

These are: and, as, assert, break, class, continue, def, del,
elif, else, except, exec, finally, for, from, global, if, import,
in, is, lambda, not, or, pass, print, raise, return, try, with,
while, and yield

There are many rules about programming and Python, we
learn them as we go along with examples

Comments are useful to explain how you think in programs

Program with comments:

# program for computing the height of a ball
# in vertical motion
v0 = 5 # initial velocity
g = 9.81 # acceleration of gravity
t = 0.6 # time
y = v0*t - 0.5*g*t**2 # vertical position
print y

Everything after # on a line is ignored by the computer and is
known as a comment where we can write whatever we want

Comments are used to explain what the computer instructions
mean, what variables mean, how the programmer reasoned
when she wrote the program, etc.

Comments are not always ignored....

Normal rule: Python programs, including comments, can only
contain characters from the English alphabet

Norwegian characters,
hilsen = ’Kjære Åsmund!’ # er æ og Å lov i en streng?
print hilsen

will normally lead to an error:
SyntaxError: Non-ASCII character ...

Remedy: put this line as the first line in your program:
# -*- coding: latin-1 -*-

(this special comment line is not ignored - Python reads it...)

Another remedy: stick to English everywhere in a program

”printf-style” formatting of text and numbers

Output from calculations often contain text and numbers, e.g.
At t=0.6 s, y is 1.23 m.

We want to control the formatting of numbers
(no of decimals, style: 0.6 vs 6E-01 or 6.0e-01)

So-called printf formatting is useful for this purpose:

print ’At t=%g s, y is %.2f m.’ % (t, y)

The printf format has ”slots” where the variables listed at the
end are put: %g ← t, %.2f ← y



Examples on different printf formats

Examples:
%g most compact formatting of a real number
%f decimal notation (-34.674)
%10.3f decimal notation, 3 decimals, field width 10
%.3f decimal notation, 3 decimals, minimum width
%e or %E scientific notation (1.42e-02 or 1.42E-02)
%9.2e scientific notation, 2 decimals, field width 9
%d integer
%5d integer in a field of width 5 characters
%s string (text)
%-20s string, field width 20, left-adjusted

See the the book for more explanation and overview

Example on printf formatting in our program

Triple-quoted strings (""") can be used for multi-line output,
and here we combine such a string with printf formatting:

v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2

print """
At t=%f s, a ball with
initial velocity v0=%.3E m/s
is located at the height %.2f m.
""" % (t, v0, y)

Running the program:
Unix/DOS> python ball_output2.py

At t=0.600000 s, a ball with
initial velocity v0=5.000E+00 m/s
is located at the height 1.23 m.

Some frequently used computer science terms

Program or code or application

Source code (program text)

Code/program snippet

Execute or run a program

Algorithm (recipe for a program)

Implementation (writing the program)

Verification (does the program work correctly?)

Bugs (errors) and debugging

Computer science meaning of terms is often different from the
natural/human language meaning

Statements

A program consists of statements
a = 1 # 1st statement
b = 2 # 2nd statement
c = a + b # 3rd statement
print c # 4th statement

Normal rule: one statement per line

Multiple statements per line is possible with a semicolon in
between the statements:

a = 1; b = 2; c = a + b; print c

This is a print statement:
print ’y=%g’ % y

This is an assignment statement:
v0 = 3

Assignment: evaluate right-hand side, assign to left-hand side
myvar = 10
myvar = 3*myvar # = 30

Syntax

Programs must have correct syntax, i.e., correct use of the
computer language grammar rules, and no misprints

This is a program with two syntax errors:
myvar = 5.2
prinnt Myvar

(prinnt is an unknown instruction, Myvar is a non-existing
variable)

Python reports syntax errors:
prinnt Myvar

^
SyntaxError: invalid syntax

Only the first encountered error is reported and the program is
stopped (correct error and continue with next error)

”Programming demands significantly higher standard of accuracy.
Things don’t simply have to make sense to another human being,
they must make sense to a computer.” – Donald Knuth

Blanks (whitespace)

Blanks may or may not be important in Python programs

These statements are equivalent (blanks do not matter):
v0=3
v0 = 3
v0= 3
v0 = 3

(the last is the preferred formatting style of assignments)

Here blanks do matter:
while counter <= 10:

counter = counter + 1 # correct (4 leading blanks)

while counter <= 10:
counter = counter + 1 # invalid syntax

(more about this in Ch. 2)



Input and output

A program has some known input data and computes some
(on beforehand unknown) output data

Sample program:
v0 = 3; g = 9.81; t = 0.6
position = v0*t - 0.5*g*t*t
velocity = v0 - g*t
print ’position:’, position, ’velocity:’, velocity

Input: v0, g, and t

Output: position and velocity

Operating system

An operating system (OS) is a set of programs managing
hardware and software resources on a computer

Example:
Unix/DOS> emacs myprog.py

emacs is a program that needs help from the OS to find the file
myprog.py on the computer’s disk

Linux, Unix (Ubuntu, RedHat, Suse, Solaris)

Windows (95, 98, NT, ME, 2000, XP, Vista)

Macintosh (old Mac OS, Mac OS X)

Mac OS X ≈ Unix ≈ Linux 6= Windows

Python supports cross-platform programming, i.e., a program
is independent of which OS we run the program on

New formula: temperature conversion

Given C as a temperature in Celsius degrees, compute the
corresponding Fahrenheit degrees F :

F =
9

5
C + 32

Program:
C = 21
F = (9/5)*C + 32
print F

Execution:
Unix/DOS> python c2f_v1.py
53

We must always check that a new program calculates the
right answer(s): a calculator gives 69.8, not 53

Where is the error?

Integer division

9/5 is not 1.8 but 1 in most computer languages (!)

If a and b are integers, a/b implies integer division: the
largest integer c such that cb ≤ a

Examples: 1/5 = 0, 2/5 = 0, 7/5 = 1, 12/5 = 2

In mathematics, 9/5 is a real number (1.8) – this is called
float division in Python and is the division we want

One of the operands (a or b) in a/b must be a real number
(”float”) to get float division

A float in Python has a dot (or decimals): 9.0 or 9. is float

No dot implies integer: 9 is an integer

9.0/5 yields 1.8, 9/5. yields 1.8, 9/5 yields 1

Corrected program (with correct output 69.8):
C = 21
F = (9.0/5)*C + 32
print F

Objects

Everything in Python is an object

Variables refer to objects
a = 5 # a refers to an integer (int) object
b = 9 # b refers to an integer (int) object
c = 9.0 # c refers to a real number (float) object
d = b/a # d refers to an int/int => int object
e = c/a # e refers to float/int => float object
s = ’b/a=%g’ % (b/a) # s is a string/text (str) object

We can convert between object types:
a = 3 # a is int
b = float(a) # b is float 3.0
c = 3.9 # c is float
d = int(c) # d is int 3
d = round(c) # d is float 4.0
d = int(round(c)) # d is int 4
d = str(c) # d is str ’3.9’
e = ’-4.2’ # e is str
f = float(e) # f is float -4.2

How are arithmetic expressions evaluated?

Example: 5
9 + 2a4/2, in Python written as 5/9 + 2*a**4/2

The rules are the same as in mathematics: proceed term by
term (additions/subtractions) from the left, compute powers
first, then multiplication and division, in each term

r1 = 5/9 (=0)

r2 = a**4

r3 = 2*r2

r4 = r3/2

r5 = r1 + r4

Use parenthesis to override these default rules – or use
parenthesis to explicitly tell how the rules work (smart):
(5/9) + (2*(a**4))/2



Standard mathematical functions

What if we need to compute sin x , cos x , ln x , etc. in a
program?

Such functions are available in Python’s math module

In general: lots of useful functionality in Python is available in
modules – but modules must be imported in our programs

Compute
√
2 using the sqrt function in the math module:

import math
r = math.sqrt(2)
# or
from math import sqrt
r = sqrt(2)
# or
from math import * # import everything in math
r = sqrt(2)

Another example:
from math import sin, cos, log
x = 1.2
print sin(x)*cos(x) + 4*log(x) # log is ln (base e)

A glimpse of round-off errors

Let us compute 1/49 · 49 and 1/51 · 51:
v1 = 1/49.0*49
v2 = 1/51.0*51
print ’%.16f %.16f’ % (v1, v2)

Output with 16 decimals becomes
0.9999999999999999 1.0000000000000000

Most real numbers are represented inexactly on a computer

Neither 1/49 nor 1/51 is represented exactly, the error is
typically 10−16

Sometimes such small errors propagate to the final answer,
sometimes not, and somtimes the small errors accumulate
through many mathematical operations

Lesson learned: real numbers on a computer and the results of
mathematical computations are only approximate

Another example involving math functions

The sinh x function is defined as

sinh(x) =
1

2

(
ex − e−x

)

We can evaluate this function in three ways:
1) math.sinh,
2) combination of two math.exp,
3) combination of two powers of math.e

from math import sinh, exp, e, pi
x = 2*pi
r1 = sinh(x)
r2 = 0.5*(exp(x) - exp(-x))
r3 = 0.5*(e**x - e**(-x))
print ’%.16f %.16f %.16f’ % (r1,r2,r3)

Output: r1 is 267.7448940410164369, r2 is
267.7448940410164369, r3 is 267.7448940410163232 (!)

Interactive Python shells

So far we have performed calculations in Python programs

Python can also be used interactively in what is known as a
shell

Type python, ipython, or idle

A Python shell is entered where you can write statements
after >>> (IPython has a different prompt)

Example:
Unix/DOS> python
Python 2.5 (r25:409, Feb 27 2007, 19:35:40)
...
>>> C = 41
>>> F = (9.0/5)*C + 32
>>> print F
105.8
>>> F
105.8

Previous commands can be recalled and edited, making the
shell an interactive calculator

Complex numbers

Python has full support for complex numbers

2 + 3i in mathematics is written as 2 + 3j in Python

Examples:
>>> a = -2
>>> b = 0.5
>>> s = complex(a, b) # make complex from variables
>>> s
(-2+0.5j)
>>> s*w # complex*complex
(-10.5-3.75j)
>>> s/w # complex/complex
(-0.25641025641025639+0.28205128205128205j)
>>> s.real
-2.0
>>> s.imag
0.5

See the book for additional info

Summary of Chapter 1 (part 1)

Programs must be accurate!

Variables are names for objects

We have met different object types: int, float, str

Choose variable names close to the mathematical symbols in
the problem being solved

Arithmetic operations in Python: term by term (+/-) from
left to right, power before * and / – as in mathematics; use
parenthesis when there is any doubt

Watch out for unintended integer division!



Summary of Chapter 1 (part 2)

Mathematical functions like sin x and ln x must be imported
from the math module:

from math import sin, log
x = 5
r = sin(3*log(10*x))

Use printf syntax for full control of output of text and numbers
>>> a = 5.0; b = -5.0; c = 1.9856; d = 33
>>> print ’a is’, a, ’b is’, b, ’c and d are’, c, d
a is 5.0 b is -5.0 c and d are 1.9856 33

Important terms: object, variable, algorithm, statement,
assignment, implementation, verification, debugging

Programming is challenging

Alan Perlis, computer scientist, 1922-1990:

”You think you know when you can learn,
are more sure when you can write,
even more when you can teach,
but certain when you can program”

”Within a computer, natural language is unnatural”

”To understand a program you must become both the
machine and the program”

Summarizing example: throwing a ball (problem)

We throw a ball with velocity v0, at an angle θ with the
horizontal, from the point (x = 0, y = y0). The trajectory of
the ball is a parabola (we neglect air resistance):

y = x tan θ − 1

2v0

gx2

cos2 θ
+ y0

Let us program this formula

Program tasks: initialize input data (v0, g , θ, y0), import
from math, compute y

We give x , y and y0 in m, g = 9.81m/s2, v0 in km/h and θ in
degrees – this requires conversion of v0 to m/s and θ to
radians

Summarizing example: throwing a ball (solution)

Program:

g = 9.81 # m/s**2
v0 = 15 # km/h
theta = 60 # degrees
x = 0.5 # m
y0 = 1 # m

print """\
v0 = %.1f km/h
theta = %d degrees
y0 = %.1f m
x = %.1f m\
""" % (v0, theta, y0, x)

# convert v0 to m/s and theta to radians:
v0 = v0/3.6
from math import pi, tan, cos
theta = theta*pi/180

y = x*tan(theta) - 1/(2*v0)*g*x**2/((cos(theta))**2) + y0

print ’y = %.1f m’ % y


