
5m
m
.

INF1100 Lectures, Chapter 3:
Functions and Branching

Hans Petter Langtangen

Simula Research Laboratory

University of Oslo, Dept. of Informatics

INF1100 Lectures, Chapter 3:Functions and Branching – p.1/??

We have used many Python functions

Mathematical functions:
from math import *
y = sin(x)*log(x)

Other functions:
n = len(somelist)
ints = range(5, n, 2)

Functions used with the dot syntax (called methods):
C = [5, 10, 40, 45]
i = C.index(10) # result: i=1
C.append(50)
C.insert(2, 20)

What is a function? So far we have seen that we put some objects
in and sometimes get an object (result) out

Next topic: learn to write your own functions

INF1100 Lectures, Chapter 3:Functions and Branching – p.2/??

Python functions

Function = a collection of statements we can execute wherever
and whenever we want

Function can take input objects and produce output objects

Functions help to organize programs, make them more
understandable, shorter, and easier to extend

Simple example: a mathematical function F (C) = 9

5
C + 32

def F(C):
return (9.0/5)*C + 32

Functions start with def, then the name of the function, then a list
of arguments (here C) – the function header

Inside the function: statements – the function body

Wherever we want, inside the function, we can "stop the function"
and return as many values/variables we want

INF1100 Lectures, Chapter 3:Functions and Branching – p.3/??

Functions must be called

A function does not do anything before it is called

Examples on calling the F(C) function:
a = 10
F1 = F(a)
temp = F(15.5)
print F(a+1)
sum_temp = F(10) + F(20)
Fdegrees = [F(C) for C in Cdegrees]

Since F(C) produces (returns) a float object, we can call
F(C) everywhere a float can be used

INF1100 Lectures, Chapter 3:Functions and Branching – p.4/??

Local variables in Functions

Example: sum the integers from start to stop
def sumint(start, stop):

s = 0 # variable for accumulating the sum
i = start # counter
while i <= stop:

s += i
i += 1

return s

print sumint(0, 10)
sum_10_100 = sumint(10, 100)

i and s are local variables in sumint – these are destroyed at
the end (return) of the function and never visible outside the
function (in the calling program); in fact, start and stop are
also local variables

In the program above, there is one global variable, sum_10_100,
and two local variables, s and i (in the sumint function)

Read Chapter 2.2.2 in the book about local and global variables!!

INF1100 Lectures, Chapter 3:Functions and Branching – p.5/??

Python function for the "ball in the air formula"

Recall the formula y(t) = v0t−
1

2
gt2:

We can make Python function for y(t):
def yfunc(t, v0):

g = 9.81
return v0*t - 0.5*g*t**2

sample calls:
y = yfunc(0.1, 6)
y = yfunc(0.1, v0=6)
y = yfunc(t=0.1, v0=6)
y = yfunc(v0=6, t=0.1)

Functions can have as many arguments as you like

When we make a call yfunc(0.1, 6), all these statements
are in fact executed:

t = 0.1 # arguments get values as in standard assignments
v0 = 6
g = 9.81
return v0*t - 0.5*g*t**2

INF1100 Lectures, Chapter 3:Functions and Branching – p.6/??

Functions may access global variables

The y(t,v0) function took two arguments

Could implement y(t) as a function of t only:
>>> def yfunc(t):
... g = 9.81
... return v0*t - 0.5*g*t**2
...
>>> yfunc(0.6)
...
NameError: global name ’v0’ is not defined

v0 must be defined in the calling program program before we call
yfunc

>>> v0 = 5
>>> yfunc(0.6)
1.2342

v0 is a global variable

Global variables are variables defined outside functions

Global variables are visible everywhere in a program

g is a local variable, not visible outside of yfunc

INF1100 Lectures, Chapter 3:Functions and Branching – p.7/??

Functions can return multiple values

Say we want to compute y(t) and y′(t) = v0 − gt:
def yfunc(t, v0):

g = 9.81
y = v0*t - 0.5*g*t**2
dydt = v0 - g*t
return y, dydt

call:
position, velocity = yfunc(0.6, 3)

Separate the objects to be returned by comma

What is returned is then actually a tuple
>>> def f(x):
... return x, x**2, x**4
...
>>> s = f(2)
>>> s
(2, 4, 16)
>>> type(s)
<type ’tuple’>
>>> x, x2, x4 = f(2)

INF1100 Lectures, Chapter 3:Functions and Branching – p.8/??

Example: compute a function defined as a sum

The function

L(x;n) =
n
∑

i=1

1

i

(

x

1 + x

)i

is an approximation to ln(1 + x) for a finite n and x ≥ 1

Let us make a Python function for L(x;n):
def L(x, n):

x = float(x) # ensure float division below
s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1+x))**i
return s

x = 5
from math import log as ln
print L(x, 10), L(x, 100), ln(1+x)

INF1100 Lectures, Chapter 3:Functions and Branching – p.9/??

Returning errors as well from the L(x, n) function

We can return more: also the first neglected term in the sum and
the error (ln(1 + x)− L(x;n)):

def L2(x, n):
x = float(x)
s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1+x))**i
value_of_sum = s
first_neglected_term = (1.0/(n+1))*(x/(1+x))**(n+1)
from math import log
exact_error = log(1+x) - value_of_sum
return value_of_sum, first_neglected_term, exact_error

typical call:
x = 1.2; n = 100
value, approximate_error, exact_error = L2(x, n)

INF1100 Lectures, Chapter 3:Functions and Branching – p.10/??

Functions do not need to return objects

Let us make a table of L(x;n) versus the exact ln(1 + x)

The table can be produced by a Python function

This function prints out text and numbers but do not need to return
anything – we can then skip the final return

def table(x):
print ’\nx=%g, ln(1+x)=%g’ % (x, log(1+x))
for n in [1, 2, 10, 100, 500]:

value, next, error = L2(x, n)
print ’n=%-4d %-10g (next term: %8.2e ’\

’error: %8.2e)’ % (n, value, next, error)

Output from table(10) on the screen:
x=10, ln(1+x)=2.3979
n=1 0.909091 (next term: 4.13e-01 error: 1.49e+00)
n=2 1.32231 (next term: 2.50e-01 error: 1.08e+00)
n=10 2.17907 (next term: 3.19e-02 error: 2.19e-01)
n=100 2.39789 (next term: 6.53e-07 error: 6.59e-06)
n=500 2.3979 (next term: 3.65e-24 error: 6.22e-15)

INF1100 Lectures, Chapter 3:Functions and Branching – p.11/??

No return value implies that None is returned

Consider a function without any return value:
>>> def message(course):
... print "%s is the greatest fun I’ve "\
... "ever experienced" % course
...
>>> message(’INF1100’)
INF1100 is the greatest fun I’ve ever experienced
>>> r = message(’INF1100) # store the return value
INF1100 is the greatest fun I’ve ever experienced
>>> print r
None

None is a special Python object that represents an "empty" or
undefined value – we will use it a lot later

INF1100 Lectures, Chapter 3:Functions and Branching – p.12/??

Keyword arguments

Functions can have arguments of the form name=value, called
keyword arguments:

>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
>>> print arg1, arg2, kwarg1, kwarg2

>>> somefunc(’Hello’, [1,2]) # drop kwarg1 and kwarg2
Hello [1, 2] True 0 # default values are used

>>> somefunc(’Hello’, [1,2], kwarg1=’Hi’)
Hello [1, 2] Hi 0 # kwarg2 has default value

>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’)
Hello [1, 2] True Hi # kwarg1 has default value

>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’, kwarg1=6)
Hello [1, 2] 6 Hi # specify all args

If we use name=value for all arguments, their sequence can be
arbitrary:

>>> somefunc(kwarg2=’Hello’, arg1=’Hi’, kwarg1=6, arg2=[2])
Hi [2] 6 Hello

INF1100 Lectures, Chapter 3:Functions and Branching – p.13/??

Example: function with default parameteres

Consider a function of t, with parameters A, a, and ω:

f(t;A, a, ω) = Ae−at sin(ωt)

We can implement f in a Python function with t as positional
argument and A, a, and ω as keyword arguments:

from math import pi, exp, sin

def f(t, A=1, a=1, omega=2*pi):
return A*exp(-a*t)*sin(omega*t)

v1 = f(0.2)
v2 = f(0.2, omega=1)
v2 = f(0.2, 1, 3) # same as f(0.2, A=1, a=3)
v3 = f(0.2, omega=1, A=2.5)
v4 = f(A=5, a=0.1, omega=1, t=1.3)
v5 = f(t=0.2, A=9)

INF1100 Lectures, Chapter 3:Functions and Branching – p.14/??

Doc strings

Python convention: document the purpose of a function, its
arguments, and its return values in a doc string – a (triple-quoted)
string written right after the function header

Examples:

def C2F(C):
"""Convert Celsius degrees (C) to Fahrenheit."""
return (9.0/5)*C + 32

def line(x0, y0, x1, y1):
"""
Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0, y0) and (x1, y1).

x0, y0: a point on the line (floats).
x1, y1: another point on the line (floats).
return: a, b (floats) for the line (y=a*x+b).
"""
a = (y1 - y0)/(x1 - x0)
b = y0 - a*x0
return a, b

INF1100 Lectures, Chapter 3:Functions and Branching – p.15/??

Convention for input and output data in functions

A function can have three types of input and output data:

input data specified through positional/keyword arguments
input/output data given as positional/keyword arguments that
will be modified and returned
output data created inside the function

All output data are returned, all input data are arguments

Sketch of a general Python function:
def somefunc(i1, i2, i3, io4, io5, i6=value1, io7=value2):

modify io4, io5, io7; compute o1, o2, o3
return o1, o2, o3, io4, io5, io7

i1, i2, i3, i6: pure input data

io4, io5, io7: input and output data

o1, o2, o3: pure output data

INF1100 Lectures, Chapter 3:Functions and Branching – p.16/??

The main program

A program contains functions and ordinary statements outside
functions, the latter constitute the main program

from math import * # in main

def f(x): # in main
e = exp(-0.1*x)
s = sin(6*pi*x)
return e*s

x = 2 # in main
y = f(x) # in main
print ’f(%g)=%g’ % (x, y) # in main

The execution starts with the first statement in the main program
and proceeds line by line, top to bottom

def statements define a function, but the statements inside the
function are not executed before the function is called

INF1100 Lectures, Chapter 3:Functions and Branching – p.17/??

Math functions as arguments to Python functions

Programs doing calculus frequently need to have functions as
arguments in other functions

We may have Python functions for

numerical integration:
∫ b

a
f(x)dx

numerical differentiation: f ′(x)

numerical root finding: f(x) = 0

Example: numerical computation of f ′′(x) by

f ′′(x) ≈
f(x− h)− 2f(x) + f(x+ h)

h2

def diff2(f, x, h=1E-6):
r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h)
return r

No difficulty with f being a function (this is more complicated in
Matlab, C, C++, Fortran, and very much more complicated in
Java)

INF1100 Lectures, Chapter 3:Functions and Branching – p.18/??

Application of the diff2 function

Code:

def g(t):
return t**(-6)

make table of g’’(t) for 14 h values:
for k in range(1,15):

h = 10**(-k)
print ’h=%.0e: %.5f’ % (h, diff2(g, 1, h))

Output (g′′(1) = 42):

h=1e-01: 44.61504
h=1e-02: 42.02521
h=1e-03: 42.00025
h=1e-04: 42.00000
h=1e-05: 41.99999
h=1e-06: 42.00074
h=1e-07: 41.94423
h=1e-08: 47.73959
h=1e-09: -666.13381
h=1e-10: 0.00000
h=1e-11: 0.00000
h=1e-12: -666133814.77509
h=1e-13: 66613381477.50939
h=1e-14: 0.00000

INF1100 Lectures, Chapter 3:Functions and Branching – p.19/??

What is the problem? Round-off errors...

For h < 10−8 the results are totally wrong

We would expect better approximations as h gets smaller

Problem: for small h we add and subtract numbers of approx
equal size and this gives rise to round-off errors

Remedy: use float variables with more digits

Python has a (slow) float variable with arbitrary number of digits

Using 25 digits gives accurate results for h ≤ 10−13

Is this really a problem? Quite seldom – other uncertainies in
input data to a mathematical computation makes it usual to have
(e.g.) 10−2 ≤ h ≤ 10−6

INF1100 Lectures, Chapter 3:Functions and Branching – p.20/??

If tests

Sometimes we want to peform different actions depending on a
condition

Consider the function

f(x) =

{

sinx, 0 ≤ x ≤ π

0, otherwise

In a Python implementation of f we need to test on the value of x
and branch into two computations:

def f(x):
if 0 <= x <= pi:

return sin(x)
else:

return 0

In general (the else block can be skipped):
if condition:

<block of statements, executed if condition is True>
else:

<block of statements, executed if condition is False>

INF1100 Lectures, Chapter 3:Functions and Branching – p.21/??

If tests with multiple branches (part 1)

We can test for multiple (here 3) conditions:
if condition1:

<block of statements>
elif condition2:

<block of statements>
elif condition3:

<block of statements>
else:

<block of statements>
<next statement>

INF1100 Lectures, Chapter 3:Functions and Branching – p.22/??

If tests with multiple branches (part 2)

Example on multiple branches:

N(x) =

0, x < 0

x, 0 ≤ x < 1

2− x, 1 ≤ x < 2

0, x ≥ 2

def N(x):
if x < 0:

return 0
elif 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
elif x >= 2:

return 0

INF1100 Lectures, Chapter 3:Functions and Branching – p.23/??

Inline if tests

A common construction is
if condition:

variable = value1
else:

variable = value2

This test can be placed on one line as an expression:
variable = (value1 if condition else value2)

Example:
def f(x):

return (sin(x) if 0 <= x <= 2*pi else 0)

INF1100 Lectures, Chapter 3:Functions and Branching – p.24/??

Summary of if tests and functions

If tests:
if x < 0:

value = -1
elif x >= 0 and x <= 1:

value = x
else:

value = 1

User-defined functions:
def quadratic_polynomial(x, a, b, c)

value = a*x*x + b*x + c
derivative = 2*a*x + b
return value, derivative

function call:
x = 1
p, dp = quadratic_polynomial(x, 2, 0.5, 1)
p, dp = quadratic_polynomial(x=x, a=-4, b=0.5, c=0)

Positional arguments must appear before keyword arguments:
def f(x, A=1, a=1, w=pi):

return A*exp(-a*x)*sin(w*x)

INF1100 Lectures, Chapter 3:Functions and Branching – p.25/??

A summarizing example for Chapter 3; problem

An integral
∫ b

a

f(x)dx

can be approximated by Simpson’s rule:

∫ b

a

f(x)dx ≈
b− a

3n

(

f(a) + f(b) + 4

n/2
∑

i=1

f(a+ (2i− 1)h)

+ 2

n/2−1
∑

i=1

f(a+ 2ih)

)

Problem: make a function Simpson(f, a, b, n=500) for
computing an integral of f(x) by Simpson’s rule. Call
Simpson(...) for 3

2

∫ π

0
sin3 xdx (exact value: 2) for

n = 2, 6, 12, 100, 500.

INF1100 Lectures, Chapter 3:Functions and Branching – p.26/??

The program: function for computing the formula

def Simpson(f, a, b, n=500):
"""
Return the approximation of the integral of f
from a to b using Simpson’s rule with n intervals.
"""

h = (b - a)/float(n)

sum1 = 0
for i in range(1, n/2 + 1):

sum1 += f(a + (2*i-1)*h)

sum2 = 0
for i in range(1, n/2):

sum2 += f(a + 2*i*h)

integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)
return integral

INF1100 Lectures, Chapter 3:Functions and Branching – p.27/??

The program: function, now with test for possible errors

def Simpson(f, a, b, n=500):

if a > b:
print ’Error: a=%g > b=%g’ % (a, b)
return None

Check that n is even
if n % 2 != 0:

print ’Error: n=%d is not an even integer!’ % n
n = n+1 # make n even

as before...
...
return integral

INF1100 Lectures, Chapter 3:Functions and Branching – p.28/??

The program: application (and main program)

def h(x):
return (3./2)*sin(x)**3

from math import sin, pi

def application():
print ’Integral of 1.5*sin^3 from 0 to pi:’
for n in 2, 6, 12, 100, 500:

approx = Simpson(h, 0, pi, n)
print ’n=%3d, approx=%18.15f, error=%9.2E’ % (n, approx,

application()

INF1100 Lectures, Chapter 3:Functions and Branching – p.29/??

The program: verification

Property of Simpson’s rule: 2nd degree polynomials are integrated
exactly!

def verify():
"""Check that 2nd-degree polynomials are integrated exactly."""
a = 1.5
b = 2.0
n = 8
g = lambda x: 3*x**2 - 7*x + 2.5 # test integrand
G = lambda x: x**3 - 3.5*x**2 + 2.5*x # integral of g
exact = G(b) - G(a)
approx = Simpson(g, a, b, n)
if abs(exact - approx) > 1E-14: # never use == for floats!

print "Error: Simpson’s rule should integrate g exactly"

verify()

INF1100 Lectures, Chapter 3:Functions and Branching – p.30/??

	We have used many Python functions
	Python functions
	Functions must be called
	Local variables in Functions
	Python function for the "ball in the air formula"
	Functions may access global variables
	Functions can return multiple values
	Example: compute a function defined as a sum
	Returning errors as well from the L(x, n)
function
	Functions do not need to return objects
	No return value implies that None is returned
	Keyword arguments
	Example: function with default parameteres
	Doc strings
	Convention for input and output data in functions
	The main program
	Math functions as arguments to Python functions
	Application of the emp {diff2} function
	What is the problem? Round-off errors...
	If tests
	If tests with multiple branches (part 1)
	If tests with multiple branches (part 2)
	Inline if tests
	Summary of if tests and functions
	A summarizing example for Chapter 3; problem
	The program: function for computing the formula
	The program: function, now with test for possible errors
	The program: application (and main program)
	The program: verification

