
5m
m
.

INF1100 Lectures, Chapter 5:
Array Computing and Curve Plotting

Hans Petter Langtangen

Simula Research Laboratory

University of Oslo, Dept. of Informatics

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.1/??

Goals of this chapter (part 1)

Learn to plot (visualize) function curves

Learn to store points on curves in arrays (≈ lists)

-12

-11

-10

-9

-8

 0  20  40  60  80  100  120  140

Y

time

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.2/??

Goals of this chapter (part 2)

Curves y = f(x) are visualized by drawing straight line between
consequtive points along the curve

We need to store the coordinates of the points along the curve in
lists or arrays x and y

Arrays ≈ lists, but much computationally more efficient

To compute the y coordinates (in an array) we need to learn about
array computations or vectorization

Array computations are useful for much more than plotting curves!

When we need to compute with large amounts of numbers, we
store the numbers in arrays and compute with arrays – this gives
shorter and faster code

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.3/??

The minimal need-to-know about vectors

Vectors and arrays are concepts in this chapter so we need to briefly
explain what these concepts are. It takes separate math courses to
understand what vectors and arrays really are, but in this course we
only need a small subset of the complete story. A learning strategy
may be to just start using vectors/arrays in programs and later, if
necessary, go back to the more mathematical details in the first part of
Ch. 4.

Vectors are known from high school mathematics, e.g.,
point (x, y) in the plane, point (x, y, z) in space

In general, a vector v is an n-tuple of numbers: v = (v0, . . . , vn−1)

There are rules for various mathematical operations on vectors,
read the book for details (later?)

Vectors can be represented by lists: vi is stored as v[i]

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.4/??

The minimal need-to-know about arrays

Arrays are a generalization of vectors where we can have multiple
indices: Ai,j , Ai,j,k – in code this is nothing but nested lists,
accessed as A[i][j], A[i][j][k]

Example: table of numbers, one index for the row, one for the
column







0 12 −1 5

−1 −1 −1 0

11 5 5 −2






A =













A0,0 · · · A0,n−1

...
. . .

...

Am−1,0 · · · Am−1,n−1













The no of indices in an array is the rank or number of dimensions

Vector = one-dimensional array, or rank 1 array

In Python code, we use Numerical Python arrays instead of lists
to represent mathematical arrays (because this is computationally
more efficient)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.5/??

Storing (x,y) points on a curve in lists/arrays

Collect (x, y) points on a function curve y = f(x) in a list:
>>> def f(x):
... return x**3 # sample function
...
>>> n = 5 # no of points in [0,1]
>>> dx = 1.0/(n-1) # x spacing
>>> xlist = [i*dx for i in range(n)]
>>> ylist = [f(x) for x in xlist]

>>> pairs = [[x, y] for x, y in zip(xlist, ylist)]

Turn lists into Numerical Python (NumPy) arrays:
>>> from numpy import * # get access to key numpy functionality
>>> x2 = array(xlist) # turn list xlist into array
>>> y2 = array(ylist)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.6/??

Make arrays directly (instead of lists)

Instead of first making lists with x and y = f(x) data, and then
turning lists into arrays, we can make NumPy arrays directly:

>>> n = 5 # number of points
>>> x2 = linspace(0, 1, n) # n points between 0 and 1
>>> y2 = zeros(n) # n zeros (float data type)
>>> for i in xrange(n):
... y2[i] = f(x2[i])
...

xrange is similar to range but faster (esp. for large n –
xrange does not explicitly build a list of integers, xrange just
lets you loop over the values)

List comprehensions create lists, not arrays, but we can do
>>> y2 = array([f(xi) for xi in x2]) # list -> array

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.7/??

The clue about NumPy arrays (part 1)

Lists can hold any sequence of any Python objects

Arrays can only hold objects of the same type

Arrays are most efficient when the elements are of basic number
types (float, int, complex)

In that case, arrays are stored efficiently in the computer memory
and we can compute very efficiently with the array elements

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.8/??



The clue about NumPy arrays (part 2)

Mathematical operations on whole arrays can be done without
loops in Python

For example,
x = linspace(0, 2, 10001) # numpy array
for i in xrange(len(x)):

y[i] = sin(x[i])

can be coded as
y = sin(x)

and the loop over all elements is now performed in a very efficient
C function

Operations on whole arrays, instead of using Python for loops, is
called vectorization and is very convenient and very efficient (and
an important programming technique to master)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.9/??

Vectorizing the computation of points on a function curve

Consider the loop with computing x coordinates (x2) and
y = f(x) coordinates (y2) along a function curve:

x2 = linspace(0, 1, n) # n points between 0 and 1
y2 = zeros(n) # n zeros (float data type)
for i in xrange(n):

y2[i] = f(x2[i])

This computation can be replaced by
x2 = linspace(0, 1, n) # n points between 0 and 1
y2 = f(x2) # y2[i] = f(x[i]) for all i

Advantage: 1) no need to allocate space for y2 (via zeros),
2) no need for a loop, 3) much faster computation

Next slide explains what happens in f(x2)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.10/??

How a vectorized function works

Consider
def f(x):

return x**3

f(x) is intended for a number x, called scalar – contrary to
vector/array

What happens with a call f(x2) when x2 is an array?

The function then evaluates x**3 for an array x

Numerical Python supports arithmetic operations on arrays, which
correspond to the equivalent operations on each element

x**3 # x[i]**3 for all i
cos(x) # cos(x[i]) for all i
x**3 + x*cos(x) # x[i]**3 + x[i]*cos(x[i]) for all i
x/3*exp(-x*a) # x[i]/3*exp(-x[i]*a) for all i

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.11/??

Vectorization

Functions that can operate on vectors (or arrays in general) are
called vectorized functions (containing vectorized expressions)

Vectorization is the process of turning a non-vectorized
expression/algorithm into a vectorized expression/algorithm

Mathematical functions in Python without if tests automatically
work for both scalar and array (vector) arguments (i.e., no
vectorization is needed by the programmer)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.12/??

More explanation of a vectorized expression

Consider y = x**3 + x*cos(x) with array x

This is how the expression is computed:
r1 = x**3 # call C function for x[i]**3 loop
r2 = cos(x) # call C function for cos(x[i]) loop
r3 = x*r2 # call C function for x[i]*r2[i] loop
y = r1 + r3 # call C function for r1[i]+r3[i] loop

The C functions are highly optimized and run very much faster
than Python for loops (factor 10-500)

Note: cos(x) calls numpy’s cos (for arrays), not math’s cos
(for scalars)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.13/??

Summarizing array example

Make two arrays x and y with 51 coordinates xi and yi = f(xi) on
the curve y = f(x), for x ∈ [0, 5] and f(x) = e−x sin(ωx):

from numpy import linspace, exp, sin, pi

def f(x):
return exp(-x)*sin(omega*x)

omega = 2*pi
x = linspace(0, 5, 51)
y = f(x) # or y = exp(-x)*sin(omega*x)

Without numpy:
from math import exp, sin, pi

def f(x):
return exp(-x)*sin(omega*x)

omega = 2*pi
n = 51
dx = (5-0)/float(n)
x = [i*dx for i in range(n)]
y = [f(xi) for xi in x]

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.14/??

Plotting curves; the very basics

Having points along a curve y = f(x) stored in one-dimensional
arrays x and y, we can easily plot the curve by plot(x, y)

Complete program:
from scitools.std import * # import numpy and plotting
t = linspace(0, 3, 51) # 51 points between 0 and 3
y = t**2*exp(-t**2) # vectorized expression
plot(t, y)
hardcopy(’tmp1.eps’) # make PostScript image for reports
hardcopy(’tmp1.png’) # make PNG image for web pages

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.5  1  1.5  2  2.5  3

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.15/??

Plotting curves; decorating the plot

A plot should have labels on the axis, a title, maybe specified
extent of the axis:

from scitools.std import * # import numpy and plotting

def f(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 51) # 51 points between 0 and 3
y = f(t)
plot(t, y)

xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’)
axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
title(’My First Easyviz Demo’)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.16/??



SciTools and Easyviz

SciTools (scitools) is a Python package with lots of useful
tools for mathematical computations, developed here in Oslo
(Langtangen, Ring, Wilbers, Bredesen, ...)

Easyviz is a subpackage of SciTools (scitools.easyviz)
doing plotting with Matlab-like syntax

Everything from Easyviz and NumPy gets imported by
from scitools.std import *

Easyviz is only a unified interface to many different plotting
programs (Gnuplot, Matlab, Grace, Matplotlib, Vtk, OpenDX)

In this course we recommend to use Gnuplot to produce the plots
(because Gnuplot installs easily everywhere)

You need to install NumPy, SciTools and Gnuplot!

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.17/??

Plotting curves; more compact syntax

Instead of calling several functions for setting axes labels,
legends, title, axes extent, etc., this information can be given as
keyword arguments to plot

plot(t, y,
xlabel=’t’,
ylabel=’y’,
legend=’t^2*exp(-t^2)’,
axis=[0, 3, -0.05, 0.6],
title=’My First Easyviz Demo’,
hardcopy=’tmp1.eps’,
show=True) # display on the screen (default)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2  2.5  3

y

t

My First Easyviz Demo

t2*exp(-t2)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.18/??

Plotting several curves in one plot

from scitools.std import * # for curve plotting

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return t**2*f1(t)

t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

# Matlab-style syntax:
plot(t, y1)
hold(’on’) # continue plotting in the same plot
plot(t, y2)

xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’)
title(’Plotting two curves in the same plot’)
hardcopy(’tmp2.eps’)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.19/??

Alternative, more compact plot command

plot(t, y1, t, y2,
xlabel=’t’, ylabel=’y’,
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
title=’Plotting two curves in the same plot’,
hardcopy=’tmp2.eps’)

# equivalent to
plot(t, y1)
hold(’on’)
plot(t, y2)

xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’)
title(’Plotting two curves in the same plot’)
hardcopy(’tmp2.eps’)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.20/??

The resulting plot with two curves

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2  2.5  3

y

t

Plotting two curves in the same plot

t2*exp(-t2)
t4*exp(-t2)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.21/??

Controlling line styles

When plotting multiple curves in the same plot, the different lines
(normally) look different

We can control the line type and color, if desired
plot(t, y1, ’r-’) # red (r) line (-)
hold(’on’)
plot(t, y2, ’bo’) # blue (b) circles (o)

# or
plot(t, y1, ’r-’, t, y2, ’bo’)

See the book or
Unix/DOS> pydoc scitools.easyviz

for documentation of colors and line styles

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.22/??

Example: two curves + random points (noise), part 1

We want to plot the f1 and f2 functions, plus some noisy data
points around the f2 curve

The noisy data points should be randomly displaced circles at
every four points

# y1 and y2 as previous example
plot(t, y1, ’r-’); hold(’on’); plot(t, y2, ’ks-’)

# pick out each 4 points and add random noise:
t3 = t[::4] # slice, stride 4
random.seed(11) # fix random sequence
noise = random.normal(loc=0, scale=0.02, size=len(t3))
y3 = y2[::4] + noise
plot(t3, y3, ’bo’)

legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’, ’data’)
title(’Simple Plot Demo’)
axis([0, 3, -0.05, 0.6])
xlabel(’t’)
ylabel(’y’)
show() # display screen plot (default)
hardcopy(’tmp3.eps’)
hardcopy(’tmp3.png’)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.23/??

Example: two curves + random points (noise), part 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2  2.5  3

y

t

Simple Plot Demo

t2*exp(-t2)
t4*exp(-t2)

data

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.24/??



Quick plotting with minimal typing

t = linspace(0, 3, 51)
plot(t, t**2*exp(-t**2), t, t**4*exp(-t**2))

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.25/??

Plot function given on the command line

Task: give the function to be plotted on the command line
Unix/DOS> python plotf.py "exp(-0.2*x)*sin(2*pi*x)" 0 4*pi

Syntax: plotf.py expression xmin xmax

Program:
from scitools.std import *
formula = sys.argv[1]
xmin = eval(sys.argv[2])
xmax = eval(sys.argv[3])

x = linspace(xmin, xmax, 101)
y = eval(formula)
plot(x, y, title=formula)

Make this program more foolproof by checking input data!

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.26/??

Making animations (movies)

Consider the Gaussian bell function (see next slide for a plot):

f(x;m, s) =
1

√
2π

1

s
exp

[

−
1

2

(

x−m

s

)2
]

Goal: make a movie showing how f(x) varies in shape as s
decreases

Idea: put many plots (for different s values) together - just as a
movie made from cartoons

Program: loop over s values, call plot for each s and make
hardcopy, combine all hardcopies to a movie

Very important: fix the y axis! Otherwise, it always adapts to the
peak of the function and the visual impression gets wrong

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.27/??

Plot of the Gaussian bell function

f(x;m, s): m is the location of the peak, s is a measure of the
width of the function

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-6 -4 -2  0  2  4  6

A Gaussian Bell Function

s=2
s=1

s=0.2

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.28/??

The code for making the animation

from scitools.std import *
import time

def f(x, m, s):
return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)

m = 0; s_start = 2; s_stop = 0.2
s_values = linspace(s_start, s_stop, 30)
x = linspace(m -3*s_start, m + 3*s_start, 1000)
# f is max for x=m; smaller s gives larger max value
max_f = f(m, m, s_stop)

# show the movie on the screen
# and make hardcopies of frames simultaneously:
frame_counter = 0
for s in s_values:

y = f(x, m, s)
plot(x, y, axis=[x[0], x[-1], -0.1, max_f],

xlabel=’x’, ylabel=’f’, legend=’s=%4.2f’ % s,
hardcopy=’tmp_%04d.eps’ % frame_counter)

frame_counter += 1
#time.sleep(0.2) # pause to control movie speed

movie(’tmp_*.eps’) # make movie file movie.gif

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.29/??

How to play movie files

Play animated GIF file:
Unix/DOS> animate movie.gif

(animate is a program in the ImageMagick suite)

movie can also make MPEG and AVI movie formats

To play MPEG, AVI, DV, DVD, WMV, WMA, MP4, MP3, OGG,
WAV, FLAC, ... use the cross-platform VLC player

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.30/??

Curves in pure text (part 1)

Plots are persisently stored in image files (PostScript or PNG)

Sometimes you want a plot in your program (e.g., to prove that the
curve looks right in a compulsory exercise where only the
program, not a nicely typeset report, is submitted)

scitools.aplotter can then be used for drawing primitive
curves in pure text (ASCII) format:

>>> from scitools.aplotter import plot
>>> from numpy import linspace, exp, cos, pi
>>> x = linspace(-2, 2, 81)
>>> y = exp(-0.5*x**2)*cos(pi*x)
>>> plot(x, y)

Try it out interactively!

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.31/??

Plotting the Heaviside function (part 1)

Aim: show that plotting is not always straightforward

Example: the Heaviside function is frequently used in science and
engineering,

H(x) =

{

0, x < 0

1, x ≥ 0

Python implementation:
def H(x):

return (0 if x < 0 else 1)

 0

 0.2

 0.4

 0.6

 0.8

 1

-4 -3 -2 -1  0  1  2  3  4

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.32/??



Plotting the Heaviside function (part 2)

Here is a standard plotting procedure (with few points since H(x)
is a simple function):

x = linspace(-10, 10, 5)
y = H(x)
plot(x, y)

First problem: ValueError error in H(x) from if x < 0

Let us debug in an interactive shell:
>>> x = linspace(-10,10,5)
>>> x
array([-10., -5., 0., 5., 10.])
>>> b = x < 0
>>> b
array([ True, True, False, False, False], dtype=bool)
>>> bool(b) # evaluate b in a boolean context
...
ValueError: The truth value of an array with more than
one element is ambiguous. Use a.any() or a.all()

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.33/??

Plotting the Heaviside function (part 3)

There are two remedies:

make a loop over x values (simple)
use a tool to automatically vectorize H(x) (simple)
code the if test in another way (most efficient)

We look at the loop version first:
def H_loop(x):

r = zeros(len(x)) # or r = x.copy()
for i in xrange(len(x)):

r[i] = H(x[i])
return r

x = linspace(-5, 5, 6)
y = H_loop(x)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.34/??

Plotting the Heaviside function (part 4)

Automatic vectorization (no loops):
from numpy import vectorize
Hv = vectorize(H)
# Hv(x) works with array x

but the resulting function is as slow as explicit loops

Best (and most advanced) method: vectorize the if test
def f(x):

if condition:
x = <expression1>

else:
x = <expression2>

return x

def f_vectorized(x):
return where(condition, expr1, expr2)
# result[i] = expr1 if condition[i] else expr2

def Hv(x):
return where(x < 0, 0.0, 1.0)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.35/??

Plotting the Heaviside function (part 5)

Back to plotting:
x = linspace(-10, 10, 5) # linspace(-10, 10, 50)
plot(x, Hv(x), axis=[x[0], x[-1], -0.1, 1.1])

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5  0  5  10

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.36/??

Plotting the Heaviside function (part 6)

We can add more and more x points, and the curve gets steeper
and steeper

Simpler strategy: plot two horizontal line segments

One from x = −10 to x = 0, y = 0; and one from x = 0 to x = 10,
y = 1

plot([-10, 0, 0, 10], [0, 0, 1, 1],
axis=[x[0], x[-1], -0.1, 1.1])

Remember: plot(x,y) just means drawing straight lines
between (x[0],y[0]), (x[1],y[1]), ...

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.37/??

Plotting the Heaviside function (part 7)

Some will argue and say that at high school they would draw H(x)
as two horizontal lines without the vertical line at x = 0 (illustrating
the jump)

How can we plot such a curve? (Plot two separate curves)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.38/??

Plotting a rapidly varying function; code

Consider plotting f(x) = sin(1/x)
def f(x):

return sin(1.0/x)

x1 = linspace(-1, 1, 10) # use 10 points
x2 = linspace(-1, 1, 1000) # use 1000 points
plot(x1, f(x1), label=’%d points’ % len(x))
plot(x2, f(x2), label=’%d points’ % len(x))

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.39/??

Plotting a rapidly varying function; 10 points

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.40/??



Plotting a rapidly varying function; 1000 points

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5  0  0.5  1

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.41/??

Assignment of an array does not copy the elements!

Consider this code:
a = x
a[-1] = q

Is x[-1] also changed to q? Yes!

a refers to the same array as x

To avoid changing x, a must be a copy of x:
a = x.copy()

The same yields slices:
a = x[r:]
a[-1] = q # changes x[-1]!
a = x[r:].copy()
a[-1] = q # does not change x[-1]

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.42/??

In-place array arithmetics

We have said that the two following statements are equivalent:
a = a + b # a and b are arrays
a += b

Mathematically, this is true, but not computationally

a = a + b first computes a + b and stores the result in an
intermediate (hidden) array (say) r1 and then the name a is
bound to r1 – the old array a is lost

a += b adds elements of b in-place in a, i.e., directly into the
elements of a without making an extra a+b array

a = a + b is therefore less efficient than a += b

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.43/??

Compound array expressions

Consider
a = (3*x**4 + 2*x + 4)/(x + 1)

Here are the actual computations:
r1 = x**4; r2 = 3*r1; r3 = 2*x; r4 = r1 + r3
r5 = r4 + 4; r6 = x + 1; r7 = r5/r6; a = r7

With in-place arithmetics we can save four extra arrays, at a cost
of much less readable code:

a = x.copy()
a **= 4
a *= 3
a += 2*x
a += 4
a /= x + 1

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.44/??

More on useful array operations

Make a new array with same size as another array:
# x is numpy array
a = x.copy()
# or
a = zeros(x.shape, x.dtype)

Make sure a list or array is an array:
a = asarray(a)
b = asarray(somearray, dtype=float)

Test if an object is an array:
>>> type(a)
<type ’numpy.ndarray’>
>>> isinstance(a, ndarray)
True

Generate range of numbers with given spacing:
>>> arange(-1, 1, 0.5)
array([-1. , -0.5, 0. , 0.5]) # 1 is not included!
>>> linspace(-1, 0.5, 4) # equiv. array

>>> from scitools.std import *
>>> seq(-1, 1, 0.5) # 1 is included
array([-1. , -0.5, 0. , 0.5, 1. ])

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.45/??

Example: vectorizing a constant function

Constant function:
def f(x):

return 2

Vectorized version must return array of 2’s:
def fv(x):

return zeros(x.shape, x.dtype) + 2

New version valid both for scalar and array x:
def f(x):

if isinstance(x, (float, int)):
return 2

elif isinstance(x, ndarray):
return zeros(x.shape, x.dtype) + 2

else:
raise TypeError\
(’x must be int/float/ndarray, not %s’ % type(x))

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.46/??

Generalized array indexing

Recall slicing: a[f:t:i], where the slice f:t:i implies a set
of indices

Any integer list or array can be used to indicate a set of indices:
>>> a = linspace(1, 8, 8)
>>> a
array([ 1., 2., 3., 4., 5., 6., 7., 8.])
>>> a[[1,6,7]] = 10
>>> a
array([ 1., 10., 3., 4., 5., 6., 10., 10.])
>>> a[range(2,8,3)] = -2 # same as a[2:8:3] = -2
>>> a
array([ 1., 10., -2., 4., 5., -2., 10., 10.])

Boolean expressions can also be used (!)
>>> a[a < 0] # pick out all negative elements
array([-2., -2.])
>>> a[a < 0] = a.max() # if a[i]<10, set a[i]=10
>>> a
array([ 1., 10., 10., 4., 5., 10., 10., 10.])

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.47/??

Two-dimensional arrays; math intro

When we have a table of numbers,







0 12 −1 5

−1 −1 −1 0

11 5 5 −2







(called matrix by mathematicians) it is natural to use a
two-dimensional array Ai,j with one index for the rows and one for
the columns:

A =









A0,0 · · · A0,n−1

...
. . .

...
Am−1,0 · · · Am−1,n−1









INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.48/??



Two-dimensional arrays; Python code

Making and filling a two-dimensional NumPy array goes like this:
A = zeros((3,4)) # 3x4 table of numbers
A[0,0] = -1
A[1,0] = 1
A[2,0] = 10
A[0,1] = -5
...
A[2,3] = -100

# can also write (as for nested lists)
A[2][3] = -100

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.49/??

From nested list to two-dimensional array

Let us make a table of numbers in a nested list:
>>> Cdegrees = [-30 + i*10 for i in range(3)]
>>> Fdegrees = [9./5*C + 32 for C in Cdegrees]
>>> table = [[C, F] for C, F in zip(Cdegrees, Fdegrees)]
>>> print table
[[-30, -22.0], [-20, -4.0], [-10, 14.0]]

Turn into NumPy array:
>>> table2 = array(table)
>>> print table2
[[-30. -22.]
[-20. -4.]
[-10. 14.]]

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.50/??

Operations on two-dimensional arrays

To see the number of elements in each dimension:
>>> table2.shape
(3, 2) # 3 rows, 2 columns

A for loop over all array elements:
>>> for i in range(table2.shape[0]):
... for j in range(table2.shape[1]):
... print ’table2[%d,%d] = %g’ % (i, j, table2[i,j])
...
table2[0,0] = -30
table2[0,1] = -22
...
table2[2,1] = 14

Alternative (single) loop over all elements:
>>> for index_tuple, value in ndenumerate(table2):
... print ’index %s has value %g’ % \
... (index_tuple, table2[index_tuple])
...
index (0,0) has value -30
index (0,1) has value -22
...
index (2,1) has value 14
>>> type(index_tuple)
<type ’tuple’>

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.51/??

Slices of two-dimensional arrays (part 1)

Rule: can use slices start:stop:inc for each index

Extract the second column:
table2[0:table2.shape[0], 1] # 2nd column (index 1)
array([-22., -4., 14.])

>>> table2[0:, 1] # same
array([-22., -4., 14.])

>>> table2[:, 1] # same
array([-22., -4., 14.])

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.52/??

Slices of two-dimensional arrays (part 2)

More slicing, with a bigger array:
>>> t = linspace(1, 30, 30).reshape(5, 6)
>>> t[1:-1:2, 2:]
array([[ 9., 10., 11., 12.],

[ 21., 22., 23., 24.]])
>>> t
array([[ 1., 2., 3., 4., 5., 6.],

[ 7., 8., 9., 10., 11., 12.],
[ 13., 14., 15., 16., 17., 18.],
[ 19., 20., 21., 22., 23., 24.],
[ 25., 26., 27., 28., 29., 30.]])

What will t[1:-1:2, 2:] be?

Slice 1:-1:2 for first index results in
[ 7., 8., 9., 10., 11., 12.]
[ 19., 20., 21., 22., 23., 24.]

Slice 2: for the second index then gives
[ 9., 10., 11., 12.]
[ 21., 22., 23., 24.]

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.53/??

Summary of vectors and arrays

Vector/array computing: apply a mathematical expression to every
element in the vector/array

Ex: sin(x**4)*exp(-x**2), x can be array or scalar, for
array the i’th element becomes
sin(x[i]**4)*exp(-x[i]**2)

Vectorization: make scalar mathematical computation valid for
vectors/arrays

Pure mathematical expressions require no extra vectorization

Mathematical formulas involving if tests require manual work for
vectorization:

scalar_result = expression1 if condition else expression2
vector_result = where(condition, expression1, expression2)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.54/??

Summary of plotting y = f(x) curves

Curve plotting:
from scitools.std import *

plot(x, y) # simplest command

plot(t1, y1, ’r’, # curve 1, red line
t2, y2, ’b’, # curve 2, blue line
t3, y3, ’o’, # curve 3, circles at data points
axis=[t1[0], t1[-1], -1.1, 1.1],
legend=(’model 1’, ’model 2’, ’measurements’),
xlabel=’time’, ylabel=’force’,
hardcopy=’myframe_%04d.png’ % plot_counter)

Straight lines are drawn between each data point

Movies: make a hardcopy for each frame, then combine frames
movie(’myframes_*.png’, encoder=’convert’,

output_file=’movie.gif’, fps=2)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.55/??

Array functionality

array(ld) copy list data ld to a numpy array

asarray(d) make array of data d (copy if necessar

zeros(n) make a vector/array of length n, with

zeros(n, int) make a vector/array of length n, with

zeros((m,n), float) make a two-dimensional with shape (

zeros(x.shape, x.dtype) make array with shape and element type

linspace(a,b,m) uniform sequence of m numbers betw

seq(a,b,h) uniform sequence of numbers from a

iseq(a,b,h) uniform sequence of integers from a

a.shape tuple containing a’s shape

a.size total no of elements in a

len(a) length of a one-dim. array a (same asINF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.56/??



Summarizing example: animating a function (part 1)

Goal: visualize the temperature in the ground as a function of
depth (z) and time (t), displayed as a movie in time:

T (z, t) = T0 + Ae−az cos(ωt− az), a =

√

ω

2k

First we make a general animation function for an f(x, t):
def animate(tmax, dt, x, function, ymin, ymax, t0=0,

xlabel=’x’, ylabel=’y’, hardcopy_stem=’tmp_’):
t = t0
counter = 0
while t <= tmax:

y = function(x, t)
plot(x, y,

axis=[x[0], x[-1], ymin, ymax],
title=’time=%g’ % t,
xlabel=xlabel, ylabel=ylabel,
hardcopy=hardcopy_stem + ’%04d.png’ % counter)

t += dt
counter += 1

Then we call this function with our special T (z, t) function

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.57/??

Summarizing example: animating a function (part 2)

# remove old plot files:
import glob, os
for filename in glob.glob(’tmp_*.png’): os.remove(filename)

def T(z, t):
# T0, A, k, and omega are global variables
a = sqrt(omega/(2*k))
return T0 + A*exp(-a*z)*cos(omega*t - a*z)

k = 1E-6 # heat conduction coefficient (in m*m/s)
P = 24*60*60.# oscillation period of 24 h (in seconds)
omega = 2*pi/P
dt = P/24 # time lag: 1 h
tmax = 3*P # 3 day/night simulation
T0 = 10 # mean surface temperature in Celsius
A = 10 # amplitude of the temperature variations (in C)
a = sqrt(omega/(2*k))
D = -(1/a)*log(0.001) # max depth
n = 501 # no of points in the z direction

z = linspace(0, D, n)
animate(tmax, dt, z, T, T0-A, T0+A, 0, ’z’, ’T’)
# make movie files:
movie(’tmp_*.png’, encoder=’convert’, fps=2,

output_file=’tmp_heatwave.gif’)

INF1100 Lectures, Chapter 5:Array Computing and Curve Plotting – p.58/??


	Goals of this chapter (part 1)
	Goals of this chapter (part 2)
	The minimal need-to-know about vectors
	The minimal need-to-know about arrays
	Storing (x,y) points
on a curve in lists/arrays
	Make arrays directly (instead of lists)
	The clue about NumPy arrays (part 1)
	The clue about NumPy arrays (part 2)
	Vectorizing the computation of points on a function curve
	How a vectorized function works
	Vectorization
	More explanation of a vectorized expression
	Summarizing array example
	Plotting curves; the very basics
	Plotting curves; decorating the plot
	SciTools and Easyviz
	Plotting curves; more compact syntax
	Plotting several curves in one plot
	Alternative, more compact plot command
	The resulting plot with two curves
	Controlling line styles
	Example: two curves + random points (noise),
part 1
	Example: two curves + random points (noise),
part 2
	Quick plotting with minimal typing
	Plot function given on the command line
	Making animations (movies)
	Plot of the Gaussian bell function
	The code for making the animation
	How to play movie files
	Curves in pure text (part 1)
	Plotting the Heaviside function (part 1)
	Plotting the Heaviside function (part 2)
	Plotting the Heaviside function (part 3)
	Plotting the Heaviside function (part 4)
	Plotting the Heaviside function (part 5)
	Plotting the Heaviside function (part 6)
	Plotting the Heaviside function (part 7)
	Plotting a rapidly varying function; code
	Plotting a rapidly varying function; 10 points
	Plotting a rapidly varying function; 1000 points
	Assignment of an array does not copy the elements!
	In-place array arithmetics
	Compound array expressions
	More on useful array operations
	Example: vectorizing a constant function
	Generalized array indexing
	Two-dimensional arrays; math intro
	Two-dimensional arrays; Python code
	From nested list to two-dimensional array
	Operations on two-dimensional arrays
	Slices of two-dimensional arrays (part 1)
	Slices of two-dimensional arrays (part 2)
	Summary of vectors and arrays
	Summary of plotting $y=f(x)$
curves
	Array functionality
	Summarizing example: animating a function (part 1)
	Summarizing example: animating a function (part 2)

