Proving Total Correctness
with Respect to a Fair
(Shared-State) Parallel Language

Ketil Stglen?
Institut fiir Informatik, der Technischen Universitit,
Munich, Germany

Abstract

A method for proving programs totally correct with respect to an uncon-
ditionally fair (shared-state) parallel language is presented. The method
is compositional and well-suited for top-down program development. It
does not depend upon temporal logic, and program transformation is not
employed. A number of examples are given.

1 Introduction

The two most well-known approaches to proving fair termination are the explicit
schedulers method and the helpful directions method. The explicit schedulers
method [Par81] transforms a fair termination problem into an ordinary non-
deterministic termination problem by augmenting the code with statements in
such a way that the new program simulates exactly all fair computations of the
old program.

The helpful directions method is based upon choosing helpful directions
at intermediate stages. There are two variants of this approach. One bases
the selection upon a rank, where each rank has its own set of helpful directions
[GFMdR&5], while the other employs a state predicate to determine the helpful
directions [LPS81]. A third way of reasoning about fairness is to use temporal
logic, as in for example [GPSS80].

The approach described in this paper does not employ any of the techniques
mentioned above, although it is to some degree related to the helpful directions
method. In the style of LSP [Stg90], [Stg91a], [Stg91b] rely- and guarantee-
conditions are used to characterise interference, while a wait-condition is em-
ployed to select helpful paths. Auxiliary variables are needed. However, they
are not first implemented and thereafter removed, as for example in the Ow-
icki/Gries method [OGT76]. Instead the use of auxiliary variables is ‘simulated’
in the deduction rules.

The next section, Section 2, defines the basic programming language. The
syntax and meaning of specifications are the topics of Section 3, while the most

*Author’s address: Institute fiir Informatik, der Technischen Universitéit, Postfach 20 24
20, Arcisstrasse 21, D-8000 Miinchen 2, Germany. Email address: stoelen@informatik.tu-
muenchen.de

Appeared in: Proc. 5’'th
Refinement Workshop,
pages 320-341, Springer
1992.



important deduction-rules are explained in Section 4. Section 5 consists of a
number of examples. Finally, Section 6 indicates some extensions and compares
the method to other methods known from the literature.

2 Programming Language

The object of this section is to characterise the programming language, both
at syntactic and semantic level. A program’s context-independent syntax is
characterised in the well-known BNF-notation: given that (vl), (el), (dl) and
(ts) denote respectively a list of variables, a list of expressions, a list of variable
declarations, and a Boolean test, then any program is of the form (pg), where

i= (as) | (bl) | (sc) | (if) | (wd) | (pr)
= (vl):= (el)

blo (dl) in (pg) olb

(pg); (pg)

1= if (ts) then (pg) else (pg) fi

;2= while (ts) do (pg) od

= {(pg) Il (pg)}

The main structure of a program is characterised above. However, a syntacti-
cally correct program is also required to satisfy some supplementary constraints.
First of all, with respect to the assignment-statement (as), it is required that
the two lists have the same number of elements, that the j’th variable in the
first list is of the same type as the j’th expression in the second, and that the
same variable does not occur in the variable list more than once.

The block-statement (bl) allows for the declaration of variables {dl). To
avoid tedious complications due to name clashes: for any program z, a variable
Z may occur in maximum one of z’s declaration lists and only once in the same
list. Moreover, if £ occurs in the declaration list of one of z’s block-statements
Z', then all occurrences of z in z are in 2.

—~ T~
Vo)
\/\/\/\n/\/\/v
I

A program variable z is local with respect to a program z, if it occurs in
a declaration list in z. Otherwise, z is global with respect to z. This means
of course that a variable z which is local with respect to a program z, may be
global with respect to some of z’s subprograms.

In LSP [Stg90] variables occurring in the Boolean test of an if- or a while-
statement are constrained from being accessed by any other program running
in parallel. In this paper there is no such constraint.

The programming language is given operational semantics in the style of
[Acz83]. A state is a mapping of all programming variables to values, while a
configuration is a pair of the form (z,s), where z is a program or the empty
program €, and s is a state. Moreover, sy denotes the state s restricted to the
set of variables 9, while s = b means that the Boolean expression b is true in
the state s.



An external transition is the least binary relation on configurations such
that

d <Z, 51>_e)<zv 52>7

while an internal transition is the least binary relation on configurations such
that either

o (vi=r, s)—i>(e, s(¥)), where s(¥) denotes the state that is obtained from
s, by mapping the variables v to the values of r in the state s, and leaving
all other maplets unchanged,

e (blo din z olb, 51)—i>(z, $2), where sy denotes a state that is obtained from
s1, by mapping the variables in d to randomly chosen type-correct values,
and leaving all other maplets unchanged,

o (215, 81) (2, 50) if (21, 1) 2 (€, 52),
21,22,sl> (235 22, 82) if (z1,51>—z>(z3,32) and 23 # e,

if b then z else 2 fi, s)— A (z1,s)if s =D,

while b do z od, s)— Z(
while b do z od, s)— Z(

(
(

e (if b then 2 else 2 fi,s)> (z2, ) if s |= b,
( z;while b do z od, s) if s = b,
(

€, s) if s = b,

z2,52> if (zl,sl>—l>(e, S2),

(a1 |l 22}, 81
(a1 |l 22}, 81
(

{2 || 2}, 31

21, 82> if <22, 81>—l)<6, 32>,

vvv
1=

{z3 | 22}, so) if (z1,51>—i>(z3,52> and z # €,

{z1 || 23}, s2) if (z2,51>—i>(23,52> and 23 # €.

o ({z |l 2}, 5105

The above definition is of course sensible only if expressions in assignment-
statements and Boolean tests never evaluate to ‘undefined’. Thus, all functions
occurring in expressions must be required to be total.

It follows from the definition that Boolean tests and assignment-statements
are atomic. The empty program e models termination.

In the rest of the paper skip will be used as an alias for the assignment of
an empty list of expressions to an empty list of variables.

Definition 1 A computation of a program z is an infinite sequence of the
form

<21,81>l4<2:2,82>g lk—'ﬁ(zk,sk)g ey

. lj . .
where for all j > 1, (2j, 8} = (241, 8j+1) is either an external or an internal
transition, and no external transition changes the values of z ’s local variables.



If o is a computation of z, the idea is that an internal transition represents
an atomic step due to z, while an external transition represents an atomic step
due to z’s environment, in other words, due to the other programs running in
parallel with z.

Given a computation o, Z(c), S(o) and L(c) are the projection functions
to sequences of programs, states and transition labels respectively, and for all
j >1,Z(oj), S(o;), L(o;) and o; denote respectively the j’th program, the j’th
state, the j’th transition label and the j’th configuration. o(j,...,00) denotes
the result of removing the j-1 first transitions.

Two computations (or prefixes of computations) o of z; and ¢’ of 2z are
compatible, if {z || »} is a program, S(o) = S(¢’) and for all j > 1, L(o;) =
L(o}) implies L(o;) = e. More informally, o of 21 and o' of z; are compatible,
if there is no clash of variable names which restricts z and 2, from being
composed in parallel (see restriction on local variable names above), and for
all n: the state in the n’th component of o is equal to the state in the n’th
component of ¢, if the n’th transition in ¢ is internal then the n’th transition in
o' is external, and if the n’th transition in ¢’ is internal then the n’th transition
in o is external. The reason for the two last constraints is of course that 2 is a
part of z’s environment, and z; is a part of z’s environment, thus an internal
transition in ¢ must correspond to an external transition in o', and the other
way around.

For example, given three assignment-statements z, 2, and 23, the two com-
putations

(215 2, 81) = {22, 52) 2 (€, 83) >0,
(23, 81) (€, 52)-5 (€, 53) S0

are not compatible, because they both start with an internal transition. How-
ever,

(215 22, 51>—i>(22, S2>—6><Z2, $3) (2, S4>—i><€, $5) =0,

(23, 51) (23, 2) > (€, 53) > (€, 54) (€, 85) 0
are compatible, and they can be composed into a unique computation

i

{2 || 2}, 1) ({22 || 23}, s2) (2, 83)-5 (2, 84) 3 (€, 85) S0

of {z; 2 || 23}, by composing the program part of each configuration, and mak-
ing a transition internal iff one of the two component transitions are internal.

More generally, for any pair of compatible computations o and o', let o X o'
denote

<21,81> lé <Z2,82> g h;)l (zk,sk> i} ey
where for all j > 1,

e s; = S(0y),



5 ={Z(0;) | Z(0j)} if Z(0;) # € and Z(03) # e,
zj = Z(O’j) if Z(O’;) =€,

zp = Z(0}) if Z(0;) = ¢,

lj = eif L(oj) = e and L(o}) = e,
o lj =iif L(oj) =i or L(0}) = i.
It is straightforward to show that:

Statement 1 For any pair of compatible computations o of 1 and o' of 2o, o X
o' is uniquely determined by the definition above, and o X ¢’ is a computation

of {2 || 2}.
Moreover, it is also easy to prove that:

Statement 2 For any computation o of {z || 22}, there are two unique com-
patible computations o’ of 21 and " of 2, such that o = o' X o

So far no fairness constraint has been introduced. This means for example
that if z; and z, denote respectively the programs

b: = true, while =b do skip od,

then there is no guarantee that {z; || 22} terminates even if the program is
executed in an environment which is restricted from changing the truth-value
of b. There are two reasons for this:

e {21 || »} may be infinitely overtaken by the environment, as for example
in the computation:

Ha ll ), s1)={a || 2}, 800> oo S{a || 2}, 80— ... .

In this particular computation all transitions are external. However, more
generally, a computation suffers from this type of unfairness if it has only
finitely many internal transitions and the empty program is never reached
(it does not terminate).

e 2; may be infinitely overtaken by z,. This is for example the case in the
computation:
({z | 22}, ) ({z || skips 22}, s)=({z || 22}, 8)=>({z || skip; 22}, 5)=
S | b s) S | skips 2} 5) S o
In the general case, a computation which suffers from this type of unfair-

ness, has infinitely many internal transitions. Moreover, from a certain
point, at least one process is infinitely overtaken.



Informally, a computation is unconditionally fair iff each process, which
becomes executable at some point in the computation, either terminates or
performs infinitely many internal transitions. Observe that this excludes both
unfairness due to infinite overtaking by the overall environment, and unfair-
ness which occurs when one process is infinitely overtaken by another process.
(What is called unconditional fairness in this paper is inspired by the definition
of impartiality in [LPS81].)

To give a more formal definition, let < be a binary relation on computations
such that o < o' iff S(o) = S(¢’), L(o) = L(c’), and there is a (non-empty)
program z such that for all j > 1, Z(0;); 2 = Z(0}). Moreover, 0 < o' means
that ¢ < ¢’ or 0 = ¢'. Clearly, for any computation o, there is a minimal
computation o', such that ¢’/ < ¢ and for all computations ¢, if 6" < o then
o' < ¢"”. Moreover, a computation ¢ is unconditionally fair iff its minimal
computation o' is unconditionally fair. For example a computation of the form

1 I lia I;
(2152, 91) = (2252, 82) = ... 2 (2;2,8) = ...,
where the subprogram z never becomes executable, is unconditionally fair if
the computation

~

(1,80 B () B .0 B (z,5) S L

is unconditionally fair.

It remains to state what it means for a minimal computation o to be uncon-
ditionally fair. There are two cases: first of all, if there are two computations
o', 0" and a j > 1, such that Z (o)) # ¢, Z(0]) #€and o' X" =0o(j,...,0),
then o is unconditionally fair iff both ¢’ and o' are unconditionally fair. On the
other hand, if o cannot be decomposed in such a way, then o is unconditionally
fair iff o terminates or ¢ has infinitely many internal transitions.

Definition 2 Given a computation o, if there is a computation o', such that
o' <o then

e o is unconditionally fair iff o' is unconditionally fair,

else if there are two computations o',¢" and a j > 1, such that Z(o}]) # e,
Z(o!)#e€and o' X" =0(j,...,00) then

e o is unconditionally fair iff both o' and 0" are unconditionally fair,
else
e o is unconditionally fair iff either

— there is a j > 1, such that Z(0;) =€, or
— for all j > 1, there is a k > j, such that L(oy) = i.



Observe that propositions 1 and 2 also hold for unconditionally fair computa-
tions.

Definition 3 Given a program z, let cp,(z) be the set of all unconditionally
fair computations o, such that Z(o1) = z.

The definition above not only constrains the programming language’s par-
allel construct to be unconditionally fair, but also restricts the actual program
from being infinitely overtaken by the overall environment. The latter restric-
tion can be thought of as an assumption about the environment built into the
semantics.

It may be argued that it would have been more correct to state this as-
sumption at the specification level as an assumption about the environment
(in other words as an additional assumption in definition 4. In that case, the
definition of unconditional fairness can be weakened to allow for infinite over-
taking by the overall environment. However, this distinction is not of any great
practical importance since the deduction rules are exactly the same for both
interpretations.

3 Specified Programs

A specification is of the form (¥, «):: (P, R, W, G, E), where ¥ is a finite set of
programming variables, « is a finite set of auxiliary variables, the pre-condition
P, and the wait-condition W are unary predicates, and the rely-condition R, the
guarantee-condition G, and the effect-condition E are binary predicates. For
any unary predicate U, s = U means that U is true in the state s. Moreover,
for any binary predicate B, (s1,s2) = B means that B is true for the pair of
states (s1, $2)-

The global state is the state restricted to YUa. It is required that ¥Na = { },
and that P, R, W, G and E constrain only the variables in ¢ U «. This means
for example, that if there are two states s, s’, such that s = P and sgua = $j,,,
then s’ = P.

Predicates will often be characterised by first order formulas. In the case of
binary predicates hooked variables (as in VDM [Jon90]) are employed to refer
to the ‘older’ state. To avoid excessive use of parentheses it is assumed that =
has lower priority than A and V, which again have lower priority than |, which
has lower priority than all other operator symbols. This means for example
that (a A b) = ¢ can be simplified to a A b = c.

A specification states a number of assumptions about the environment.
First of all, the initial state is assumed to satisfy the pre-condition. Secondly, it
is assumed that any external transition, which changes the global state, sgtisﬁes

the rely-condition. For example, given the rely-condition z <z Ay =Y, it is
assumed that the environment will never change the value of y. Moreover, if
the environment assigns a new value to z, then this value will be less than or
equal to the variable’s previous value. The assumptions are summed up in the
definition below:



Definition 4 Given a set of variables ¥, and pre- and rely-conditions P, R,
then ext(d, P, R) denotes the set of all computations o, such that:

e S(o) =P,
o forallj > 1, if L(oj) = e and S(0j)9 # S(0j+1)9 then
— (8(0;), S(051)) E E.

A specification is not only stating assumptions about the environment, but
also commitments to the implementation. Given an environment which satis-
fies the assumptions, then an implementation is required either to busy-wait
forever in states which satisfy the wait-condition or to terminate. Moreover,
any internal transition, which changes the global state, is required to satisfy
the guarantee-condition. Finally, if the implementation terminates, then the
overall effect is constrained to satisfy the effect-condition. External transitions
both before the first internal transition and after the last are included in the
overall effect. This means that given the rely-condition z >z, the strongest
effect-condition for the program skip is z ZE. The commitments are summed
up below:

Definition 5 Given a set of variables ¥, and wait-, guarantee- and effect-
conditions W, G, E, then int(¥, W, G, E) denotes the set of all computations
o, such that:

e there is a j > 1, such that for all k > j, S(oy) = W, or there is a j > 1,
such that Z(o;) = ¢,

o forallj > 1, if L(oj) =i and S(oj)s # S(0jt1)e then

= (8(05),5(0541)) = G,
o forallj > 1, if Z(0o;) = € then (S(01),S(05)) E E.

(As in LSP, see [Stg91b], it is also possible to interpret the wait-condition as an
assumption about the environment. In that case the environment is assumed
always eventually to provide a state which falsifies the wait-condition, while
the implementation is required to terminate. The deduction rules are exactly
the same for both interpretations.)

A specified program is a pair consisting of a program z and a specification
(¥,a):: (P,R, W, G, E), written

z sat (¢,a):: (P,R, W,G, E).

It is required that for any variable z occurring in z, z is an element of ¢ iff z
is global with respect to z. Moreover, any variable occurring in z is restricted
from being an element of a.

If the set of auxiliary variables is empty, it is now straightforward to char-
acterise what it means for a specified program to be valid: namely that any
program computation which satisfies the environment assumptions, also satis-
fies the commitments to the implementation. More formally:



Definition 6 =, z sat (¢,{})::(P,R, W,G,E) iff ext(d,P,R) N cpy(z) C
int(¢, W, G, E).

So far very little has been said about the use of auxiliary variables. Auxil-
iary variables are employed to increase the expressiveness. For example, with-
out auxiliary variables many ‘correct’ developments are excluded because suf-
ficiently strong intermediate predicates cannot be expressed.

In the Owicki/Gries method [OG76] (and in many other approaches) aux-
iliary variables are first implemented as ordinary programming variables and
thereafter removed. The reason why this strategy is chosen by Owicki/Gries, is
that they conduct their proofs in several iterations, and one way to ‘remember’
the auxiliary structure from one iteration to the next is to store it in terms of
program code. They first conduct a proof in the style of ordinary Hoare-logic,
then they prove freedom from interference and so on, and the auxiliary struc-
ture is implemented in order to ensure that it remains unchanged from the first
to the last iteration. In the method presented in this paper, there is only one
proof iteration and therefore no need to ‘remember’ the auxiliary structure.
Thus, the use of auxiliary variables can be ‘simulated’ in the deduction rules.
Note that there are no constraints on the type of an auxiliary variable. For
example the user is not restricted to reason in terms of full histories (history
variables, traces etc.), but is instead free to define the auxiliary structure he
prefers.

To characterise validity when the set of auxiliary variables is non-empty, it
is necessary to introduce some new notation. If / and k are finite lists, then #I
denotes the number of elements in I, (I) denotes the set of elements in [, [ o k
denotes the result of prefixing k with [, while [, where 1 < n < #I, denotes
the n’th element of [. Finally, a <(3,) u iff a is a list of variables, u is a
list of expressions, and ¢ and a are two sets of variables, such that #a = #u,
(a) C a, and for all 1 < j < #a, any variable occurring in u; is an element of
YU {aj}.

An augmentation with respect to two sets of variables ¢ and «, is the least

. . (0) .
binary relation < on programs such that either:

(¥,0)
e y:=r < wvoa=rou, where

- Q< (9,0) U

. (9,c) .
e bloz:Ty,...,2,: Ty in zolb <" bloz:Ti,...,z,: Ty in 2’ olb, where

@O, fmhe)
-z — z',

) (@) h
® Zi;% —  2{; 2, Where

(V,a) (V,a)
— 2 = z and 2 = 2z,



¢,a . . .
e if bthen 2 else 2 fi (<—>) blo b':Bin b oa: = bou;if b’ then z{ else 2} fi olb,
where

, (0,) , (¥a)
—b gdUa,aa u, 21 = z,and n = 2z,

. (9,2)
e while b do z od —

b o u od olb, where

blo b':B in b' 0o a:= b o u;while b’ do z';b' 0 a: =

(9,2)

[V NeY
- bV €IV, a(y,0 uand z = 2,

3,
o (a2} ) {4}, where

)

(%) (0,0)
— 2z = 2z and 2 = 2.

The idea is that z; (?i?) 2o if 2 can be obtained from z; by adding auxiliary
structure with respect to a set of programming variables ¢ and a set of auxiliary
variables . The augmentation of an assignment statment allows a possibly
empty list of auxiliary variables to be updated in the same atomic step as r is
assigned to v. The additional constraint a <—(y o) © is needed to make sure that
the elements of a really are auxiliary variables, and that the different auxiliary
variables do not depend upon each other. The latter requirement makes it
possible to remove some auxiliary variables from a specified program without
having to remove all the auxiliary variables. This requirement states that if
an auxiliary variable occurs on the left-hand side of an assignment-statement,
the only auxiliary variable that may occur in the corresponding expression on
the right-hand side is the very same variable. However, an assignment to an
auxiliary variable may have any number of elements of 9 in its right-hand side
expression.

The block-statement is used in the augmentations of if- and while-statements
to allow auxiliary variables to be updated in the same atomic step as the
Boolean test is evaluated. Note that the introduced Boolean variable is lo-
cal and can therefore not be accessed by the environment. Thus the augmen-
tations of if- and while-statements do not significantly change their external
behaviour. An internal transition represents either the execution of a decla-
ration list in a block-statement, a Boolean test in an if- or a while-statement,
or an assignment-statement. Since the former is ‘independent’ of the state in
which it takes place, it is enough to update auxiliary variables in connection
with the execution of Boolean tests and assignment-statements.

Observe that the definition of an augmentation does not restrict the auxil-
iary variables to be of a particular type. For example, if z; denotes the program

10



if =0 then

z:=1
else

while z <0doz:=z+1 od
fi

and z denotes the program

blo b1:B in
bi,a:=z=0,a+1;
if by then
z,0:=1,a+1
else
blo bQZB in
by,a:=2<0,a+1;
while by do z,a:=2+1,a+ 1;bs,a:=2<0,a+1 od
olb
fi
olb
then 2 ({w}ia}) 2.

It may be argued that the definition of an augmentation is rather compli-
cated and hard to remember. However, augmentations are only used to charac-
terise the semantics of a specified program and is not something the user needs
to worry about in order to apply the method. For example, augmentations do
not occur in the deduction rules.

It is now possible to define what it means for a specified program to be valid
when the set of auxiliary variables is non-empty: namely that the program
can be augmented with auxiliary structure in such a way that any program
computation which satisfies the environment assumptions, also satisfies the
commitments to the implementation. More formally:

Definition 7 =, z sat (¥, «a):: (P,R, W, G, E) iff there is a program z, such
9,
that z1(<—o>()z2 and |=,, z sat ($Ua,{})::(P,R, W,G,E).

4 Deduction Rules

The next step is to define a logic, called LSP,, for the deduction of valid
specified programs. The consequence-, assignment-, sequential-, while- and
parallel-rules are explained in detail below. The remaining rules needed to
prove semantic completeness together with some useful adaptation rules are
listed in the appendix.

Given a list of expressions r, a set of variables 1, a unary predicate B, and
two binary predicates C' and D, then 7 denotes the list of expressions that

can be obtained from r by hooking all free variables in r; B denotes a binary

11



predicate such that (s,s') =B iff s = B; Iy denotes the predicate A, v 2117,
while C' | D denotes the relational composition of C' and D, in other words,
(s,s") E C | D iff there is a state s" such that (s,s"”) = C and (s",s") E D.
Moreover, CT denotes the transitive closure of C', while C* denotes the reflexive
and transitive closure of C. Finally, C is well-founded iff there is no infinite
sequence of states s1 sz ... ... such that for all j > 1, (s, s;41) = C.

The consequence-rule

Py, = P
Ry = Ry
Wi = Wsy
G = Gy
E, = FEs
z sat (9, ):: (P1, Ry, Wh, Gy, E)
z sat (0,a):: (P2, Ry, Wa, G2, Ey)

is straightforward. It basically states that it is sound to strengthen the assump-
tions and weaken the commitments.
The first version of the assignment-rule

PAR=P
PAv=" Ay = (GVI)AE
vi=rsat (3,{}):: (P, R,false, G,R* | E | R¥)

is sufficient whenever the set of auxiliary variables is empty. Any uncondition-
ally fair computation is of the form

(vi=r,5)5 ... S(v:=r, sk)—i>(e, Shp1)— ... (e, sn) S L.
Thus, the statement will always terminate, and there is only one internal tran-

sition. Moreover, since the initial state is assumed to satisfy P and any external
transition, which changes the global state, is assumed to saitisfy R, it follows
from the first premise that s, = P and that (sg,sg+1) FEP Av =7 AN\ (v)-
But then, it is clear from the second premise that (si, sp+1) E GV Iy, and that
for all I > k, (s1,8) = R* | E | R*, which proves that the rule is sound.

In the general case, the execution of an assignment-statement v: = r corre-
sponds to the execution of an assignment-statement of the form v o a: = r o u,
where @ ¢—(y o) u. Thus, the rule

PAR=P
P Av =7 /\I,g\(,,) Aa =u /\Ia\<a> = (GV Iyua) NE @ (9,a) U
vi=r sat (¢,a):: (P, R,false, G,R* | E | R*)

is sufficient. The only real difference from above is that the premise guarantees
that the assignment-statement can be augmented with auxiliary structure in
such a way that the specified changes to both the auxiliary variables and the

12



programming variables will indeed take place. Moreover, since skip is an alias
for the assignment of an empty list of expressions to an empty list of variables,
the skip-rule

PAR=P
PNy Aa=1u Aoy = (GV ) AE @ (9,0) U
skip sat (¢,a):: (P, R,false, G,R* | E | R*)

follows as a special case.
The sequential-rule

21 sat (ﬁ,a)::(Pl,R, W, G,P2 A El)
Zy sat (19,0()::(P2,R, W7 G7E2)
215 22 sat (ﬁ)a)::(PlaR) W: G: El | EZ)

depends upon the fact that the first component’s effect-condition implies the
second component’s pre-condition. This explains why P, occurs in the effect-
condition of the first premise. Since an effect-condition covers interference both
before the first internal transition and after the last, it follows from the two
premises that the overall effect is characterised by Ej | E».

The while-rule

PAR=P

ETARV G)* | (Ig A\=W) | (RV G)* is well-founded

z sat (9,{})::(PAb,R,W,G,PAE)

while b do z od sat (0, {}):: (P, R, W, G, B* | (E* A —=b) | B*)

can be used when the set of auxiliary variables is empty. The unary predicate
P can be thought of as an invariant which is true whenever the Boolean test b
is evaluated. Since the conclusion’s pre-condition restricts the initial state to
satisfy P, and since it follows from the first premise that P is maintained by the
environment, it follows that P is true when the Boolean test is evaluated for
the first time. The occurrence of P in the effect-condition of the third premise
implies that P is also true at any later evaluation of the Boolean test.

It follows from the third premise that the binary predicate E characterises
the overall effect of executing the body of the while loop under the given envi-
ronment assumptions. But then it is clear that the overall effect of the while-
statement satisfies R* | (E™ A =b) | R* if the loop iterates at least once, while
the overall effect satisfies R* | (Iy A —b) | R* otherwise. This explains the con-
clusion’s effect-condition. That any internal transition either leaves the state
unchanged or satisfies G also follows from the third premise.

Note that A is the main symbol of the well-founded predicate in the sec-
ond premise. To prove that this premise implies that the statement terminates
unless it ends up busy-waiting in W, assume there is a non-terminating com-
putation (a computation where the empty program is never reached)

13



o € ext(¥, P, R) N cp,(while b do z od)

such that for all j > 1, there is a k > j, which satisfies S(oy) E - W. It follows
from the third premise that there is an infinite sequence of natural numbers
ng <mg < ... <ng< ...,such that forall j > 1,

(S(U"j)’ S(Uanrl )) ': E.

But then, since by assumption = W is true infinitely often, and since the overall

effect of any finite sequence of external and internal transitions satisfies (R V

G)*, it follows that there is an infinite sequence of natural numbers m; < my <
. < mg < ...,such that for all j > 1,

(S(om;); S(Om,1)) EETARY G)* | (Isg A=W) | (RV Q).

This contradicts the second premise. Thus, the statement terminates or ends
up busy-waiting in W.
In the general case the following rule

PIANR= P,

(Ey | E5)T" A(RV G)* | (Igua A= W) | (RV G)* is well-founded

skip sat (¢, a):: (Py,false, false, G, P> A Ey)

z sat (19,&)::(P2 ANbR,W,G, P, /\Ez)

while b do z od sat (¢,a):: (P, R, W, G,R* | (Ey | E2)* | (E1 A—b) | R*)

is needed. Remember that the execution of while b do z od corresponds to the
execution of a program of the form

blo b':Bin b’ o a:= b o u;while b’ do 2';b' o a:= b o u od olb,

where a <—(y,,) u and 2 (?f;) z'. The third premise simulates the evaluation of
the Boolean test. Thus, the overall effect satisfies R* | (Ey | E2)* | (E1 A —b) |
R* if the loop iterates at least once, and R* | (Ey A =b) | R* otherwise.

To grasp the intuition behind the parallel-rule, consider first the rule

21 @ (ﬁ,a)::(P,RV Gg,false, Gl,El)
2 sat (19,0(): : (P,R V G’l,false, GQ,EQ)
{2 || 22} sat (9, ):: (P, R, false, G1 V Gz, By A\ Ey)

which is sufficient whenever both component programs terminate. Observe
that the rely-condition of the first premise allows any interference due to z
(given the actual assumptions about the overall environment), and similarly
that the rely-condition of the second premise allows any interference due to 2.
Thus since an effect-condition covers interference both before the first internal
transition and after the last, it is clear from the two premises that {z || 2}
terminates, that any internal transition, which changes the global state, satisfies
G1 V G, and that the overall effect satisfies Ey A Es.

14



The next version of the parallel-rule

(Wi ANEx) A=(Wa A Ey) A—(Wy A Wa)

21 sat (19,0()1:(P,RV GQ, Wl, Gl,El)

2 sat (19,6!)2 : (P,R \Y Gl, Ws, Gz,Ez)

{21 || ZQ} @ (19,0(): : (P,R,false, G1 \Y GQ,El N EQ)

is sufficient whenever the overall program {z; || 2} terminates. It follows from
the second premise that z can end up busy-waiting only in W;, when executed
in an environment characterised by P and RV G2. Moreover, the third premise
implies that 2, can end up busy-waiting only in W,, when executed in an
environment characterised by P and RV G;. But then, since the first premise
implies that z cannot be busy-waiting after z» has terminated, that z; cannot
be busy-waiting after z has terminated, and that z and 2z; cannot be busy
waiting at the same time, it follows that {z; || 2} is guaranteed to terminate
in an environment characterised by P and R.
It is now easy to extend the rule to deal with the general case:

(Wi A Bo) A—~(Wa A Ey) A—(Wy A Wa)
ZlL%( (P,R\/GQ,W\/ Wl,Gl,El)
ZQL%( (P,R\/Gl,W\/ WQ,GQ,EQ)
{Z1 || z2}L% (ﬁ)a)::(PvR; W>G1V G2>E1 /\E2)

?,a)::
?,a)::

The idea is that W characterises the states in which the overall program is
allowed to end up busy-waiting.

This rule can of course be generalised further to deal with more than two
processes:

(W A /\anl,k;éj(Wk V Ep))i<i<m
zj sat (¢,a)::(P,RV \/anl,k;éj G, WV W;, Gj,Ej)lstm
||]m:1 zj sat (197&): : (P)Ra W:V;‘nzl Gj:/\;‘nzl EJ)

Here, [|J2; 2 denotes any program that can be obtained from z || ... [| 2
by adding curly brackets. The ‘first’ premise ensures that whenever process
j busy-waits in a state s such that s = =W A W;, then there is at least one
other process which has not terminated and is not busy-waiting. This rule is
‘deducible’ from the basic rules of LSP,,.

5 Examples

Examples where a logic of this type is employed for the development of non-
trivial programs can be found in [Stg90], [St@91a], [XH92]. Moreover, it is
shown in [Stg90], [Ste91b] how auxiliary variables can be used both as a speci-
fication tool to eliminate undesirable implementations, and as a verification tool
to make it possible to prove that an already finished program satisfies a certain
specification. The object here is to apply LSP, to prove fair termination.

15



Let z; and 2, denote the programs
b: = true, while —b do skip od.
It should be obvious that
Eu{a || 2=} sat ({b},{}):: (true, Z:> b, false, true, true).

This follows easily by the consequence- and parallel-rules, if

o 21 sat ({0}, {}):: (true, b= b, false, b= b, b),
Fu 22 sat ({b},{}):: (true, b= b, b, b= b,true).

(For any specified program ¢, ,, 9 iff ¢ is provable in LSP,,.) The first of these
specified programs can be deduced by the consequence- and assignment-rules.
The second follows by the pre-, consequence- and while-rules, since

o skip sat ({b},{})::(=b, b= b,=b, b= b, true),

and it is clear that

~ b A=) [ (be b)Ab) | (b= b)

is well-founded.
A slightly more complicated synchronisation is dealt with in the next ex-
ample. Let z; and 2> denote the programs

while n > 0 do
if n mod 2 =0 then n:= n-1 else skip fi
od,

while n > 0 do
if n mod 2 =1 then n:= n-1 else skip fi
od.

Given that n > 0, the program z may reduce the value of n by 1 if n is even,
while z; may subtract 1 from n if n is odd. Thus, it should be clear that

E.{z || 2=} sat ({n},{})::(true,n <, false, true, n < 0).
Moreover, this follows by the consequence- and parallel-rules if

Fu z1Lﬁ({n},{})::(true,n<H,nmod2:1/\n>0,n<ﬁ,n§0),
Fu 22 sat ({n},{})::(true,n <n,nmod2=0An>0,n<n,n <0).

The first of these can be deduced by the pre-, consequence-, assignment-, if-
and while-rules since it can easily be proved that z ’s if-statement satisfies

16



({n},{})::(n>0,n <,
nmod2=1An>0,n<n,n mod2=0=n<n)

and

n>0A(nmod2=0=n<n) A
(n<n)|(n=nA(nmod2=0Vn<0))|(n<n)

is well-founded. Not surprisingly, z» can be proved to satisfy its specification
in a similar way.

Finally, to indicate how LSP, can be used for the design of programs in
a top-down style, let g be a function, such that = Jy- € Z:¢(y) = 0, and
consider the task of designing a program z which satisfies

Fu 2z sat ({z},{}):: (true,false,false, true, g(z) = 0).

One sensible decomposition strategy is two split the searching into two parallel
processes z; and 2z dealing with respectively the non-negative and the negative
integers. This means that z should be of the form

blo f:B in f:=false; {# || 2} olb,

where the Boolean flag f is to be switched on when the appropriate argument
is found. Clearly, any atomic step after f has been initialised is required to
satisfy the binary invariant

(F=HAG = g(z) =0),

from now on denoted by in. Moreover, it follows by the effect-, consequence-,
assignment-, sequential- and block-rules that this is a valid implementation of
z if

I_U {Zl || 22} sat ({x,f},{}) : (_'fa in,false, iﬂ,f),

which again can be deduced by the consequence- and parallel-rules if

F oz sab ({,/},{}):: (=f,in, (Vy € Z:y 2 0= g(y) # 0) A=f, in, f),
2 sab ({z,f},{}):: (=f,in, (Vy € Z:y <O = g(y) # 0) A=f, in, f).

Moreover, the consequence-, assignment-, sequential- and block-rules imply
that

blo z": Z in z':= 0; 2{ olb
is a valid decomposition of z if

2 sat ({z,f, '}, {D::(=f Az’ =0,in Az’ =1,
(Vy € Z:y 20=g(y) #0) A~f,in, f).

17



Finally, since

(< F ATZOA(Vy € Z:0< y <a'= f(y) #0) A
(9(2") = 0= f) A (g(a") # 0 = 2 =2’ +1))* A
in|(z=2 ANf of)Az' =2’ NFy- € Z:y >0Ag(y) =0V f)) | in

is well-founded, it can be deduced by the pre-, consequence-, assignment-, if-
and while-rules that

while =f do if g(z') = 0 then f,z:=true,z’ else z': =z’ + 1 fi od

is a correct implementation of z{. A program which implements 2z, can be
designed in a similar style.

6 Discussion

Rules for proving fair termination with respect to a set of transition functions
{fi,...,fm} assosiated with m processes are described in [LPS81]. A state pred-
icate is used to characterise helpful directions in the same way as LSP,, employs
a wait-condition to select helpful execution paths of the while-statement’s body.
Rules for fair termination with respect to a set of transition functions are also
given in [APS84]. These rules are based upon explicit scheduling.

Explicit scheduling is also used in [OA86], but in a less abstract setting. Un-
fortunately, the method depends upon a freedom from interference test which
can be carried out only after the component processes have been implemented
and their proofs have been constructed. This is unacceptable when designing
large software products in a top-down style, because erroneous design deci-
sions, taken early in the design process, may remain undetected until the whole
program is complete. In the worst case, everything that depends upon such
mistakes will have to be thrown away.

To avoid problems of this type a proof method should satisfy what is known
as the principle of compositionality [dR85], [Zwi89] — namely that a program’s
specification always can be verified on the basis of the specifications of its
constituent components, without knowledge of the interior program structure
of those components.

The methods in [BKP84] and [Lam85] are based upon temporal logic. They
are both compositional and non-transformational. Moreover, they can be used
to prove total correctness with respect to the type of programming language
discussed above. However, due to lack of published examples, it is not clear
how useful they are when it comes to practical program development. One
obvious difference, with respect to the approach presented in this paper, is
that these logics have a much wider application area — they can for example
be used for the design of non-terminating programs with respect to general

liveness properties. Some very general compositional parallel-rules are proposed
in [Sta85] and [AL90].

18



LSP is a compositional formal method specially designed for top-down devel-
opment, of totally correct shared-state parallel programs. LSP can be thought
of as a compositional reformulation of the Owicki/Gries method [OG76], and
also as an extension of Jones’ rely/guarantee approach [Jon83]. A related sys-
tem is described in [XH91]. Examples where LSP is used for the development
of non-trivial programs can be found in [St@90], [Stg91a]. In [Stg90] it is also
explained how LSP can be extended to deal with partial functions and guarded
commands.

This paper shows how LSP can be modified to allow for the design of pro-
grams, whose correctness depends upon busy-waiting. Only unconditional fair-
ness is discussed here. However, systems for weak and strong fairness can be
formulated in a similar style. The author is currently working on a paper
which deals with both unconditional, weak and strong fairness. This paper
will include soundness and semantic completeness proofs for the formal system
presented above.

7 Acknowledgements

I would like to thank my PhD supervisor Cliff B. Jones for his help and support.
I am also indebted to Howard Barringer and Xu Qiwen. A special thanks goes
to Mathai Joseph whose comments led to many improvements.

The research reported in this paper was carried out at the Department
of Computer Science, Manchester University with financial support from the
Norwegian Research Council for Science and the Humanities and the Wolfson
Foundation.

References

[Acz83] P. Aczel. On an inference rule for parallel composition. Unpub-
lished Paper, February 1983.

[AL90] M. Abadi and L. Lamport. Composing specifications. Technical
Report 66, Digital, Palo Alto, 1990.

[APS84] K. R. Apt, A. Pnueli, and J. Stavi. Fair termination revisited with
delay. Theoretical Computer Science, 33:65-84, 1984.

[BKP84] H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose
temporal logic specifications. In Proc. Sizteenth ACM Symposium
on Theory of Computing, pages 51-63, 1984.

[dR85] W. P. de Roever. The quest for compositionality, formal models

in programming. In F.J. Neuhold and C. Chroust, editors, Proc.
IFIP 85, pages 181-205, 1985.

19



[GFMdRS85] O. Grumberg, N. Francez, J.A. Makowsky, and W. P. de Roever. A

[GPSSS0]

[Jon83]

[Jon90]

[Lam85]

[LPS81]

[OAS6]

[0GT6]

[Par81]

[Sta85]

[St@90]

[Ste91a)

proof rule for fair termination of guarded commands. Information
and Control, 66:83—102, 1985.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal
analysis of fairness. In Proc. 7th ACM-POPL, 1980.

C. B. Jones. Specification and design of (parallel) programs. In
Mason, R.E.A.; editor, Proc. Information Processing 83, pages
321-331. 1983.

C. B. Jones. Systematic Software Development Using VDM, Sec-
ond Edition. Prentice-Hall International, 1990.

L. Lamport. An axiomatic semantics of concurrent programming
languages. In K. R. Apt, editor, Logics and Models of Concurrent
Systems. NATO ASI Series, Vol. F13, 1985.

D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and
fairness: The ethics of concurrent termination. In Proc. Automata,
Languages, and Programming, Lecture Notes in Computer Science
115, pages 264-277, 1981.

E. R. Olderog and K. R. Apt. Fairness in parallel programs: The
transformational approach. Technical Report 86-1, Liens, 1986.

S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs. Acta Informatica, 6:319-340, 1976.

D. Park. A predicate transformer for weak fair iteration. In Proc.
6th IBM Symp. on Math. Foundation of Computer Science, 1981.

E. W. Stark. A proof technique for rely/guarantee properties. In
S.N. Maheshwari, editor, Proc. 5th Conference on the Foundation
of Software Technology and Theoretical Computer Science, Lecture
Notes in Computer Science 206, pages 369-391, 1985.

K. Stolen. Development of Parallel Programs on Shared Data-
Structures. PhD thesis, University of Manchester, 1990. Also
available as technical report UMCS-91-1-1, University of Manch-
ester.

K. Stglen. An attempt to reason about shared-state concurrency
in the style of VDM. In S. Prehn and W.J. Toetenel, editors, Proc.
VDM’91, Lecture Notes in Computer Science 552, pages 324-342,
1991. Also available as technical report UMCS-91-7-1, University
of Manchester.

20



[Stg91b]

[XH91]

[XH92]

[Zwi89)]

K. Stglen. A method for the development of totally correct shared-
state parallel programs. In J.C.M. Baeten and J.F. Groote, edi-
tors, Proc. CONCUR’91, Lecture Notes in Computer Science 527,
pages 510-525, 1991. Also available as technical report UMCS-91-
6-1, University of Manchester.

Q. Xu and J. He. A theory of state-based parallel programming
by refinement:part 1. In J. Morris and R.C. Shaw, editors, Proc.
4th BCS-FACS Refinement Workshop. 1991.

Q. Xu and J. He. A case study in formally developing state-based
parallel programs — the dutch national torus. In C.B. Jones and
R.C. Shaw, editors, Proc. 5th BCS-FACS Refinement Workshop.
1992.

J. Zwiers. Compositionality, Concurrency and Partial Correct-
ness: Proof Theories for Networks of Processes and Their Re-
lationship, volume 321 of Lecture Notes in Computer Science.
Springer-Verlag 1989.

Additional Rules Needed to Prove Semantic Completeness

if::

PINR= P,

skip sat (9, a):: (Py,false, false, G, P» A Ey)
Z1 @ (19,&)2 : (P2 AN b,R, W, G, E2)

2z sat (9,a):: (P A=b,R, W, G, E>)

if b then z else % fi sat (¥,)::(P1,R, W, G,R* | E; | E»)

block: :

zsat (9,0)::(P,RAN]_ 5 =1, W, G, E)

blo 2;: Th, ..., z,: Ty in 2z olb sat (9 \ Uj_, {#},a):: (P,R, W, G, E)

elimination: :

x &0

z sat (0,a):: (P,R,W,G,E)

z sat (3, a\ {z})::(Fz: P,V T dz:R,W,G,E)

pre::
z sat (¢,a):: (P,R,W,G,E)
2 sat (¥,a)::(P,R, W, G, P AE)

21



Some Useful Adaptation Rules

effect: :
z sat (0,a):: (P,R, W, G, E)
z sat (¥, a):: (P,R, W,G,EN(RV G)*)

rely: :
z sat (¢,a):: (P, R,
z sat (¢,a):: (P,R*, W,QG,E)

invariant: :
P=K

KARVG) =K
z sat (9,a):: (P,R, W, G, E)

2 sat (9,a):: (PR, K A W,K AG, E)

stutter: :
z sat (9, a):: (P,R, W,G,E)
z sat (¢, a):: (P,RV Iyua, W, G, E)

glo::
rZ€IdUa
z sat (¢,a):: (P,R, W, G, E)

zsat (WU {z},a)::(P,R,W,G Az =1, E)
aux: :
rZ€IdUa
z sat (9,a):: (P,R, W, G, E)

zsat (9,aU{z})::(P,R,W,G Az =2, E)

22



