
Proving Total Correctness
with Respect to a Fair

�Shared�State� Parallel Language

Ketil St�len��

Institut f�ur Informatik� der Technischen Universit�at�

Munich� Germany

Abstract

A method for proving programs totally correct with respect to an uncon�
ditionally fair �shared�state� parallel language is presented� The method
is compositional and well�suited for top�down program development� It
does not depend upon temporal logic� and program transformation is not
employed� A number of examples are given�

� Introduction
Appeared in� Proc� ��th
Re�nement Workshop�
pages 	
��	
�� Springer
���
�

The two most well�known approaches to proving fair termination are the explicit
schedulers method and the helpful directions method� The explicit schedulers
method �Par��� transforms a fair termination problem into an ordinary non�
deterministic termination problem by augmenting the code with statements in
such a way that the new program simulates exactly all fair computations of the
old program�
The helpful directions method is based upon choosing helpful directions

at intermediate stages� There are two variants of this approach� One bases
the selection upon a rank� where each rank has its own set of helpful directions
�GFMdR���� while the other employs a state predicate to determine the helpful
directions �LPS���� A third way of reasoning about fairness is to use temporal
logic� as in for example �GPSS����
The approach described in this paper does not employ any of the techniques

mentioned above� although it is to some degree related to the helpful directions
method� In the style of LSP �St����� �St���a�� �St���b� rely� and guarantee�
conditions are used to characterise interference� while a wait�condition is em�
ployed to select helpful paths� Auxiliary variables are needed� However� they
are not �rst implemented and thereafter removed� as for example in the Ow�
icki�Gries method �OG���� Instead the use of auxiliary variables is �simulated�
in the deduction rules�
The next section� Section 
� de�nes the basic programming language� The

syntax and meaning of speci�cations are the topics of Section 	� while the most

�Author�s address� Institute f�ur Informatik� der Technischen Universit�at� Postfach �� ��
��� Arcisstrasse �	� D
���� M�unchen �� Germany� Email address� stoelen
informatik�tu

muenchen�de

�



important deduction�rules are explained in Section 
� Section � consists of a
number of examples� Finally� Section � indicates some extensions and compares
the method to other methods known from the literature�

� Programming Language

The object of this section is to characterise the programming language� both
at syntactic and semantic level� A program�s context�independent syntax is
characterised in the well�known BNF�notation� given that hvli� heli� hdli and
htsi denote respectively a list of variables� a list of expressions� a list of variable
declarations� and a Boolean test� then any program is of the form hpgi� where

hpgi � � � hasi j hbli j hsci j hif i j hwdi j hpri

hasi � � � hvli� � heli

hbli � � � blo hdli in hpgi olb

hsci � � � hpgi� hpgi

hif i � � � if htsi then hpgi else hpgi �

hwdi � � � while htsi do hpgi od

hpri � � � fhpgi k hpgig

The main structure of a program is characterised above� However� a syntacti�
cally correct program is also required to satisfy some supplementary constraints�
First of all� with respect to the assignment�statement hasi� it is required that
the two lists have the same number of elements� that the j �th variable in the
�rst list is of the same type as the j �th expression in the second� and that the
same variable does not occur in the variable list more than once�

The block�statement hbli allows for the declaration of variables hdli� To
avoid tedious complications due to name clashes� for any program z � a variable
x may occur in maximum one of z �s declaration lists and only once in the same
list� Moreover� if x occurs in the declaration list of one of z �s block�statements
z �� then all occurrences of x in z are in z ��

A program variable x is local with respect to a program z � if it occurs in
a declaration list in z � Otherwise� x is global with respect to z � This means
of course that a variable x which is local with respect to a program z � may be
global with respect to some of z �s subprograms�

In LSP �St���� variables occurring in the Boolean test of an if� or a while�
statement are constrained from being accessed by any other program running
in parallel� In this paper there is no such constraint�

The programming language is given operational semantics in the style of
�Acz�	�� A state is a mapping of all programming variables to values� while a
con�guration is a pair of the form hz � si� where z is a program or the empty

program �� and s is a state� Moreover� s� denotes the state s restricted to the
set of variables �� while s j� b means that the Boolean expression b is true in
the state s �






An external transition is the least binary relation on con�gurations such
that

� hz � s�i
e
�hz � s�i�

while an internal transition is the least binary relation on con�gurations such
that either

� hv � � r � si
i
�h�� s�vr �i� where s�

v
r � denotes the state that is obtained from

s � by mapping the variables v to the values of r in the state s � and leaving
all other maplets unchanged�

� hblo d in z olb� s�i
i
�hz � s�i� where s� denotes a state that is obtained from

s�� by mapping the variables in d to randomly chosen type�correct values�
and leaving all other maplets unchanged�

� hz�� z�� s�i
i
�hz�� s�i if hz�� s�i

i
�h�� s�i�

� hz�� z�� s�i
i
�hz�� z�� s�i if hz�� s�i

i
�hz�� s�i and z� �� ��

� hif b then z� else z� �� si
i
�hz�� si if s j� b�

� hif b then z� else z� �� si
i
�hz�� si if s j� �b�

� hwhile b do z od� si
i
�hz �while b do z od� si if s j� b�

� hwhile b do z od� si
i
�h�� si if s j� �b�

� hfz� k z�g� s�i
i
�hz�� s�i if hz�� s�i

i
�h�� s�i�

� hfz� k z�g� s�i
i
�hz�� s�i if hz�� s�i

i
�h�� s�i�

� hfz� k z�g� s�i
i
�hfz� k z�g� s�i if hz�� s�i

i
�hz�� s�i and z� �� ��

� hfz� k z�g� s�i
i
�hfz� k z�g� s�i if hz�� s�i

i
�hz�� s�i and z� �� ��

The above de�nition is of course sensible only if expressions in assignment�
statements and Boolean tests never evaluate to �unde�ned�� Thus� all functions
occurring in expressions must be required to be total�
It follows from the de�nition that Boolean tests and assignment�statements

are atomic� The empty program � models termination�
In the rest of the paper skip will be used as an alias for the assignment of

an empty list of expressions to an empty list of variables�

De�nition � A computation of a program z� is an in�nite sequence of the

form

hz�� s�i
l�� hz�� s�i

l�� � � �
lk��� hzk � sk i

lk� � � � �

where for all j � �� hzj � sj i
lj
� hzj��� sj��i is either an external or an internal

transition� and no external transition changes the values of z��s local variables�

	



If � is a computation of z � the idea is that an internal transition represents
an atomic step due to z � while an external transition represents an atomic step
due to z �s environment� in other words� due to the other programs running in
parallel with z �
Given a computation �� Z ���� S ��� and L��� are the projection functions

to sequences of programs� states and transition labels respectively� and for all
j � �� Z ��j �� S ��j �� L��j � and �j denote respectively the j �th program� the j �th
state� the j �th transition label and the j �th con�guration� ��j � � � � ��� denotes
the result of removing the j �� �rst transitions�
Two computations �or pre�xes of computations� � of z� and �� of z� are

compatible� if fz� k z�g is a program� S ��� � S ���� and for all j � �� L��j � �
L���j � implies L��j � � e� More informally� � of z� and �

� of z� are compatible�
if there is no clash of variable names which restricts z� and z� from being
composed in parallel �see restriction on local variable names above�� and for
all n� the state in the n�th component of � is equal to the state in the n�th
component of ��� if the n�th transition in � is internal then the n�th transition in
�� is external� and if the n�th transition in �� is internal then the n�th transition
in � is external� The reason for the two last constraints is of course that z� is a
part of z��s environment� and z� is a part of z��s environment� thus an internal
transition in � must correspond to an external transition in ��� and the other
way around�
For example� given three assignment�statements z�� z� and z�� the two com�

putations

hz�� z�� s�i
i
�hz�� s�i

i
�h�� s�i

e
���

hz�� s�i
i
�h�� s�i

e
�h�� s�i

e
��

are not compatible� because they both start with an internal transition� How�
ever�

hz�� z�� s�i
i
�hz�� s�i

e
�hz�� s�i

e
�hz�� s�i

i
�h�� s�i

e
���

hz�� s�i
e
�hz�� s�i

i
�h�� s�i

e
�h�� s�i

e
�h�� s�i

e
��

are compatible� and they can be composed into a unique computation

hfz�� z� k z�g� s�i
i
�hfz� k z�g� s�i

i
�hz�� s�i

e
�hz�� s�i

i
�h�� s�i

e
��

of fz�� z� k z�g� by composing the program part of each con�guration� and mak�
ing a transition internal i� one of the two component transitions are internal�
More generally� for any pair of compatible computations � and ��� let � � ��

denote

hz�� s�i
l�� hz�� s�i

l�� � � �
lk��� hzk � sk i

lk� � � � �

where for all j � ��

� sj � S ��j ��






� zj � fZ ��j � k Z ��
�
j �g if Z ��j � �� � and Z ���j � �� ��

� zj � Z ��j � if Z ��
�
j � � ��

� zj � Z ���j � if Z ��j � � ��

� lj � e if L��j � � e and L���j � � e�

� lj � i if L��j � � i or L���j � � i �

It is straightforward to show that�

Statement � For any pair of compatible computations � of z� and �
� of z�� � �

�� is uniquely determined by the de�nition above� and � � �� is a computation

of fz� k z�g�

Moreover� it is also easy to prove that�

Statement � For any computation � of fz� k z�g� there are two unique com�

patible computations �� of z� and ��� of z�� such that � � �� � ����

So far no fairness constraint has been introduced� This means for example
that if z� and z� denote respectively the programs

b� � true� while �b do skip od�

then there is no guarantee that fz� k z�g terminates even if the program is
executed in an environment which is restricted from changing the truth�value
of b� There are two reasons for this�

� fz� k z�g may be in�nitely overtaken by the environment� as for example
in the computation�

hfz� k z�g� s�i
e
�hfz� k z�g� s�i

e
� � � �

e
�hfz� k z�g� sj i

e
� � � � �

In this particular computation all transitions are external� However� more
generally� a computation su�ers from this type of unfairness if it has only
�nitely many internal transitions and the empty program is never reached
�it does not terminate��

� z� may be in�nitely overtaken by z�� This is for example the case in the
computation�

hfz� k z�g� si
i
�hfz� k skip� z�g� si

i
�hfz� k z�g� si

i
�hfz� k skip� z�g� si

i
�

� � �
i
�hfz� k z�g� si

i
�hfz� k skip� z�g� si

i
� � � � �

In the general case� a computation which su�ers from this type of unfair�
ness� has in�nitely many internal transitions� Moreover� from a certain
point� at least one process is in�nitely overtaken�

�



Informally� a computation is unconditionally fair i� each process� which
becomes executable at some point in the computation� either terminates or
performs in�nitely many internal transitions� Observe that this excludes both
unfairness due to in�nite overtaking by the overall environment� and unfair�
ness which occurs when one process is in�nitely overtaken by another process�
�What is called unconditional fairness in this paper is inspired by the de�nition
of impartiality in �LPS�����
To give a more formal de�nition� let � be a binary relation on computations

such that � � �� i� S ��� � S ����� L��� � L����� and there is a �non�empty�
program z such that for all j � �� Z ��j �� z � Z ���j �� Moreover� � � �� means
that � � �� or � � ��� Clearly� for any computation �� there is a minimal
computation ��� such that �� � � and for all computations ���� if ��� � � then
�� � ���� Moreover� a computation � is unconditionally fair i� its minimal
computation �� is unconditionally fair� For example a computation of the form

hz�� z � s�i
l�� hz�� z � s�i

l�� � � �
lj��
� hzj � z � sj i

lj
� � � � �

where the subprogram z never becomes executable� is unconditionally fair if
the computation

hz�� s�i
l�� hz�� s�i

l�� � � �
lj��
� hzj � sj i

lj
� � � �

is unconditionally fair�
It remains to state what it means for a minimal computation � to be uncon�

ditionally fair� There are two cases� �rst of all� if there are two computations
��� ��� and a j � �� such that Z ����� �� �� Z ����� � �� � and �� � ��� � ��j � � � � ����
then � is unconditionally fair i� both �� and ��� are unconditionally fair� On the
other hand� if � cannot be decomposed in such a way� then � is unconditionally
fair i� � terminates or � has in�nitely many internal transitions�

De�nition � Given a computation �� if there is a computation ��� such that

�� � � then

� � is unconditionally fair i� �� is unconditionally fair�

else if there are two computations ��� ��� and a j � �� such that Z ����� �� ��

Z ����� � �� � and �� � ��� � ��j � � � � ��� then

� � is unconditionally fair i� both �� and ��� are unconditionally fair�

else

� � is unconditionally fair i� either

� there is a j � �� such that Z ��j � � �� or

� for all j � �� there is a k � j � such that L��k � � i �

�



Observe that propositions � and 
 also hold for unconditionally fair computa�
tions�

De�nition � Given a program z� let cpu �z � be the set of all unconditionally

fair computations �� such that Z ���� � z �

The de�nition above not only constrains the programming language�s par�
allel construct to be unconditionally fair� but also restricts the actual program
from being in�nitely overtaken by the overall environment� The latter restric�
tion can be thought of as an assumption about the environment built into the
semantics�
It may be argued that it would have been more correct to state this as�

sumption at the speci�cation level as an assumption about the environment
�in other words as an additional assumption in de�nition 
� In that case� the
de�nition of unconditional fairness can be weakened to allow for in�nite over�
taking by the overall environment� However� this distinction is not of any great
practical importance since the deduction rules are exactly the same for both
interpretations�

� Speci�ed Programs

A speci�cation is of the form ��� ��� � �P �R�W �G �E �� where � is a �nite set of
programming variables� � is a �nite set of auxiliary variables� the pre�condition
P � and the wait�condition W are unary predicates� and the rely�condition R� the
guarantee�condition G � and the e�ect�condition E are binary predicates� For
any unary predicate U � s j� U means that U is true in the state s � Moreover�
for any binary predicate B � �s�� s�� j� B means that B is true for the pair of
states �s�� s���
The global state is the state restricted to �	�� It is required that �
� � f g�

and that P �R�W �G and E constrain only the variables in � 	 �� This means
for example� that if there are two states s � s �� such that s j� P and s��� � s �����
then s � j� P �
Predicates will often be characterised by �rst order formulas� In the case of

binary predicates hooked variables �as in VDM �Jon���� are employed to refer
to the �older� state� To avoid excessive use of parentheses it is assumed that �
has lower priority than � and 
� which again have lower priority than j� which
has lower priority than all other operator symbols� This means for example
that �a � b�� c can be simpli�ed to a � b � c�
A speci�cation states a number of assumptions about the environment�

First of all� the initial state is assumed to satisfy the pre�condition� Secondly� it
is assumed that any external transition� which changes the global state� satis�es

the rely�condition� For example� given the rely�condition x �
�
x �y �

�
y � it is

assumed that the environment will never change the value of y � Moreover� if
the environment assigns a new value to x � then this value will be less than or
equal to the variable�s previous value� The assumptions are summed up in the
de�nition below�

�



De�nition � Given a set of variables �� and pre� and rely�conditions P� R�

then ext���P �R� denotes the set of all computations �� such that�

� S ���� j� P�

� for all j � �� if L��j � � e and S ��j �� �� S ��j���� then

� �S ��j ��S ��j���� j� R�

A speci�cation is not only stating assumptions about the environment� but
also commitments to the implementation� Given an environment which satis�
�es the assumptions� then an implementation is required either to busy�wait

forever in states which satisfy the wait�condition or to terminate� Moreover�
any internal transition� which changes the global state� is required to satisfy
the guarantee�condition� Finally� if the implementation terminates� then the
overall e�ect is constrained to satisfy the e�ect�condition� External transitions
both before the �rst internal transition and after the last are included in the
overall e�ect� This means that given the rely�condition x �

�
x � the strongest

e�ect�condition for the program skip is x �
�
x � The commitments are summed

up below�

De�nition 	 Given a set of variables �� and wait�� guarantee� and e�ect�

conditions W � G� E� then int���W �G �E � denotes the set of all computations

�� such that�

� there is a j � �� such that for all k � j � S ��k � j�W� or there is a j � ��
such that Z ��j � � ��

� for all j � �� if L��j � � i and S ��j �� �� S ��j���� then

� �S ��j ��S ��j���� j� G�

� for all j � �� if Z ��j � � � then �S �����S ��j �� j� E�

�As in LSP� see �St���b�� it is also possible to interpret the wait�condition as an
assumption about the environment� In that case the environment is assumed
always eventually to provide a state which falsi�es the wait�condition� while
the implementation is required to terminate� The deduction rules are exactly
the same for both interpretations��
A speci�ed program is a pair consisting of a program z and a speci�cation

��� ��� � �P �R�W �G �E �� written

z sat ��� ��� � �P �R�W �G �E ��

It is required that for any variable x occurring in z � x is an element of � i� x

is global with respect to z � Moreover� any variable occurring in z is restricted
from being an element of ��
If the set of auxiliary variables is empty� it is now straightforward to char�

acterise what it means for a speci�ed program to be valid� namely that any
program computation which satis�es the environment assumptions� also satis�
�es the commitments to the implementation� More formally�

�



De�nition 
 j�u z sat ��� f g�� � �P �R�W �G �E � i� ext���P �R� 
 cpu�z � �
int���W �G �E ��

So far very little has been said about the use of auxiliary variables� Auxil�
iary variables are employed to increase the expressiveness� For example� with�
out auxiliary variables many �correct� developments are excluded because suf�
�ciently strong intermediate predicates cannot be expressed�
In the Owicki�Gries method �OG��� �and in many other approaches� aux�

iliary variables are �rst implemented as ordinary programming variables and
thereafter removed� The reason why this strategy is chosen by Owicki�Gries� is
that they conduct their proofs in several iterations� and one way to �remember�
the auxiliary structure from one iteration to the next is to store it in terms of
program code� They �rst conduct a proof in the style of ordinary Hoare�logic�
then they prove freedom from interference and so on� and the auxiliary struc�
ture is implemented in order to ensure that it remains unchanged from the �rst
to the last iteration� In the method presented in this paper� there is only one
proof iteration and therefore no need to �remember� the auxiliary structure�
Thus� the use of auxiliary variables can be �simulated� in the deduction rules�
Note that there are no constraints on the type of an auxiliary variable� For
example the user is not restricted to reason in terms of full histories �history
variables� traces etc��� but is instead free to de�ne the auxiliary structure he
prefers�
To characterise validity when the set of auxiliary variables is non�empty� it

is necessary to introduce some new notation� If l and k are �nite lists� then �l
denotes the number of elements in l � hli denotes the set of elements in l � l � k
denotes the result of pre�xing k with l � while ln � where � � n � �l � denotes
the n�th element of l � Finally� a ������ u i� a is a list of variables� u is a
list of expressions� and � and � are two sets of variables� such that �a � �u�
hai � �� and for all � � j � �a� any variable occurring in uj is an element of
� 	 fajg�
An augmentation with respect to two sets of variables � and �� is the least

binary relation
�����
	� on programs such that either�

� v � � r
�����
	� v � a� � r � u� where

� a ������ u�

� blo x��T�� � � � � xn �Tn in z olb
�����
	� blo x��T�� � � � � xn �Tn in z � olb� where

� z
���
S

n

j��
fxjg���

	� z ��

� z�� z�
�����
	� z ��� z

�
�� where

� z�
�����
	� z �� and z�

�����
	� z ���

�



� if b then z� else z� �
�����
	� blo b��B in b��a� � b�u� if b� then z �� else z

�
� � olb�

where

� b� �� � 	 �� a ������ u� z�
�����
	� z ��� and z�

�����
	� z ���

� while b do z od
�����
	� blo b��B in b� � a� � b � u�while b� do z �� b� � a� �

b � u od olb� where

� b� �� � 	 �� a ������ u and z
�����
	� z ��

� fz� k z�g
�����
	� fz �� k z

�
�g� where

� z�
�����
	� z �� and z�

�����
	� z ���

The idea is that z�
�����
	� z� if z� can be obtained from z� by adding auxiliary

structure with respect to a set of programming variables � and a set of auxiliary
variables �� The augmentation of an assignment statment allows a possibly
empty list of auxiliary variables to be updated in the same atomic step as r is
assigned to v � The additional constraint a ������ u is needed to make sure that
the elements of a really are auxiliary variables� and that the di�erent auxiliary
variables do not depend upon each other� The latter requirement makes it
possible to remove some auxiliary variables from a speci�ed program without
having to remove all the auxiliary variables� This requirement states that if
an auxiliary variable occurs on the left�hand side of an assignment�statement�
the only auxiliary variable that may occur in the corresponding expression on
the right�hand side is the very same variable� However� an assignment to an
auxiliary variable may have any number of elements of � in its right�hand side
expression�

The block�statement is used in the augmentations of if� and while�statements
to allow auxiliary variables to be updated in the same atomic step as the
Boolean test is evaluated� Note that the introduced Boolean variable is lo�
cal and can therefore not be accessed by the environment� Thus the augmen�
tations of if� and while�statements do not signi�cantly change their external
behaviour� An internal transition represents either the execution of a decla�
ration list in a block�statement� a Boolean test in an if� or a while�statement�
or an assignment�statement� Since the former is �independent� of the state in
which it takes place� it is enough to update auxiliary variables in connection
with the execution of Boolean tests and assignment�statements�

Observe that the de�nition of an augmentation does not restrict the auxil�
iary variables to be of a particular type� For example� if z� denotes the program

��



if x � � then

x � � �
else

while x � � do x � � x � � od

�

and z� denotes the program

blo b��B in

b�� a� � x � �� a � ��
if b� then

x � a� � �� a � �
else

blo b��B in

b�� a� � x � �� a � ��
while b� do x � a� � x � �� a � �� b�� a� � x � �� a � � od

olb

�

olb

then z�
�fxg�fag�

	� z��
It may be argued that the de�nition of an augmentation is rather compli�

cated and hard to remember� However� augmentations are only used to charac�
terise the semantics of a speci�ed program and is not something the user needs
to worry about in order to apply the method� For example� augmentations do
not occur in the deduction rules�
It is now possible to de�ne what it means for a speci�ed program to be valid

when the set of auxiliary variables is non�empty� namely that the program
can be augmented with auxiliary structure in such a way that any program
computation which satis�es the environment assumptions� also satis�es the
commitments to the implementation� More formally�

De�nition � j�u z� sat ��� ��� � �P �R�W �G �E � i� there is a program z�� such

that z�
�����
	� z� and j�u z� sat �� 	 �� f g�� � �P �R�W �G �E ��

� Deduction Rules

The next step is to de�ne a logic� called LSPu � for the deduction of valid
speci�ed programs� The consequence�� assignment�� sequential�� while� and
parallel�rules are explained in detail below� The remaining rules needed to
prove semantic completeness together with some useful adaptation rules are
listed in the appendix�
Given a list of expressions r � a set of variables �� a unary predicate B � and

two binary predicates C and D � then
�
r denotes the list of expressions that

can be obtained from r by hooking all free variables in r �
�

B denotes a binary

��



predicate such that �s � s �� j�
�

B i� s j� B � I� denotes the predicate
V

v�� v �
�
v �

while C j D denotes the relational composition of C and D � in other words�
�s � s �� j� C j D i� there is a state s �� such that �s � s ��� j� C and �s ��� s �� j� D �
Moreover�C� denotes the transitive closure of C � while C � denotes the re�exive
and transitive closure of C � Finally� C is well�founded i� there is no in�nite
sequence of states s�s� � � � sk � � � such that for all j � �� �sj � sj��� j� C �
The consequence�rule

P� � P�

R� � R�

W� �W�

G� � G�

E� � E�

z sat ��� ��� � �P��R��W��G��E��

z sat ��� ��� � �P��R��W��G��E��

is straightforward� It basically states that it is sound to strengthen the assump�
tions and weaken the commitments�
The �rst version of the assignment�rule


�
P � R � P
�

P �v �
�
r �I�nhvi � �G 
 I�� � E

v � � r sat ��� f g�� � �P �R� false�G �R� j E j R��

is su cient whenever the set of auxiliary variables is empty� Any uncondition�
ally fair computation is of the form

hv � � r � s�i
e
� � � �

e
�hv � � r � ski

i
�h�� sk��i

e
� � � �

e
�h�� sni

e
� � � � �

Thus� the statement will always terminate� and there is only one internal tran�
sition� Moreover� since the initial state is assumed to satisfy P and any external
transition� which changes the global state� is assumed to satisfy R� it follows

from the �rst premise that sk j� P and that �sk � sk��� j�
�

P �v �
�
r �I�nhvi�

But then� it is clear from the second premise that �sk � sk��� j� G 
 I�� and that
for all l � k � �s�� sl� j� R� j E j R�� which proves that the rule is sound�
In the general case� the execution of an assignment�statement v � � r corre�

sponds to the execution of an assignment�statement of the form v � a� � r � u�
where a ������ u� Thus� the rule


�
P � R � P
�

P �v �
�
r �I�nhvi � a �

�
u �I�nhai � �G 
 I���� � E

v � � r sat ��� ��� � �P �R� false�G �R� j E j R��

a ������ u

is su cient� The only real di�erence from above is that the premise guarantees
that the assignment�statement can be augmented with auxiliary structure in
such a way that the speci�ed changes to both the auxiliary variables and the

�




programming variables will indeed take place� Moreover� since skip is an alias
for the assignment of an empty list of expressions to an empty list of variables�
the skip�rule


�
P � R � P
�

P �I� � a �
�
u �I�nhai � �G 
 I���� � E

skip sat ��� ��� � �P �R� false�G �R� j E j R��

a ������ u

follows as a special case�

The sequential�rule

z� sat ��� ��� � �P��R�W �G �P� � E��
z� sat ��� ��� � �P��R�W �G �E��

z�� z� sat ��� ��� � �P��R�W �G �E� j E��

depends upon the fact that the �rst component�s e�ect�condition implies the
second component�s pre�condition� This explains why P� occurs in the e�ect�
condition of the �rst premise� Since an e�ect�condition covers interference both
before the �rst internal transition and after the last� it follows from the two
premises that the overall e�ect is characterised by E� j E��

The while�rule


�
P � R � P

E� � �R 
G�� j �I� � �W � j �R 
G�� is well�founded

z sat ��� f g�� � �P � b�R�W �G �P � E �

while b do z od sat ��� f g�� � �P �R�W �G �R� j �E� � �b� j R��

can be used when the set of auxiliary variables is empty� The unary predicate
P can be thought of as an invariant which is true whenever the Boolean test b
is evaluated� Since the conclusion�s pre�condition restricts the initial state to
satisfy P � and since it follows from the �rst premise that P is maintained by the
environment� it follows that P is true when the Boolean test is evaluated for
the �rst time� The occurrence of P in the e�ect�condition of the third premise
implies that P is also true at any later evaluation of the Boolean test�

It follows from the third premise that the binary predicate E characterises
the overall e�ect of executing the body of the while loop under the given envi�
ronment assumptions� But then it is clear that the overall e�ect of the while�
statement satis�es R� j �E� � �b� j R� if the loop iterates at least once� while
the overall e�ect satis�es R� j �I� � �b� j R

� otherwise� This explains the con�
clusion�s e�ect�condition� That any internal transition either leaves the state
unchanged or satis�es G also follows from the third premise�

Note that � is the main symbol of the well�founded predicate in the sec�
ond premise� To prove that this premise implies that the statement terminates
unless it ends up busy�waiting in W � assume there is a non�terminating com�
putation �a computation where the empty program is never reached�

�	



� � ext���P �R� 
 cpu�while b do z od�

such that for all j � �� there is a k � j � which satis�es S ��k � j� �W � It follows
from the third premise that there is an in�nite sequence of natural numbers
n� � n� � � � � � nk � � � � � such that for all j � ��

�S ��nj
��S ��nj��

�� j� E �

But then� since by assumption �W is true in�nitely often� and since the overall
e�ect of any �nite sequence of external and internal transitions satis�es �R 

G��� it follows that there is an in�nite sequence of natural numbers m� � m� �

� � � � mk � � � � � such that for all j � ��

�S ��mj
��S ��mj��

�� j� E� � �R 
G�� j �I� � �W � j �R 
G���

This contradicts the second premise� Thus� the statement terminates or ends
up busy�waiting in W �
In the general case the following rule


�
P� � R � P�

�E� j E��
� � �R 
G�� j �I��� � �W � j �R 
G�� is well�founded

skip sat ��� ��� � �P�� false� false�G �P� � E��
z sat ��� ��� � �P� � b�R�W �G �P� � E��

while b do z od sat ��� ��� � �P��R�W �G �R� j �E� j E��� j �E� � �b� j R��

is needed� Remember that the execution of while b do z od corresponds to the
execution of a program of the form

blo b��B in b� � a� � b � u�while b� do z �� b� � a� � b � u od olb�

where a ������ u and z
�����
	� z �� The third premise simulates the evaluation of

the Boolean test� Thus� the overall e�ect satis�es R� j �E� j E��
� j �E� � �b� j

R� if the loop iterates at least once� and R� j �E� � �b� j R
� otherwise�

To grasp the intuition behind the parallel�rule� consider �rst the rule

z� sat ��� ��� � �P �R 
G�� false�G��E��
z� sat ��� ��� � �P �R 
G�� false�G��E��

fz� k z�g sat ��� ��� � �P �R� false�G� 
G��E� � E��

which is su cient whenever both component programs terminate� Observe
that the rely�condition of the �rst premise allows any interference due to z�
�given the actual assumptions about the overall environment�� and similarly
that the rely�condition of the second premise allows any interference due to z��
Thus since an e�ect�condition covers interference both before the �rst internal
transition and after the last� it is clear from the two premises that fz� k z�g
terminates� that any internal transition� which changes the global state� satis�es
G� 
G�� and that the overall e�ect satis�es E� � E��

�




The next version of the parallel�rule

��W� � E�� � ��W� � E�� � ��W� �W��
z� sat ��� ��� � �P �R 
G��W��G��E��
z� sat ��� ��� � �P �R 
G��W��G��E��

fz� k z�g sat ��� ��� � �P �R� false�G� 
G��E� � E��

is su cient whenever the overall program fz� k z�g terminates� It follows from
the second premise that z� can end up busy�waiting only inW�� when executed
in an environment characterised by P and R
G�� Moreover� the third premise
implies that z� can end up busy�waiting only in W�� when executed in an
environment characterised by P and R 
G�� But then� since the �rst premise
implies that z� cannot be busy�waiting after z� has terminated� that z� cannot
be busy�waiting after z� has terminated� and that z� and z� cannot be busy
waiting at the same time� it follows that fz� k z�g is guaranteed to terminate
in an environment characterised by P and R�

It is now easy to extend the rule to deal with the general case�

��W� � E�� � ��W� � E�� � ��W� �W��
z� sat ��� ��� � �P �R 
G��W 
W��G��E��
z� sat ��� ��� � �P �R 
G��W 
W��G��E��

fz� k z�g sat ��� ��� � �P �R�W �G� 
G��E� � E��

The idea is that W characterises the states in which the overall program is
allowed to end up busy�waiting�

This rule can of course be generalised further to deal with more than two
processes�

��Wj �
Vm

k	��k �	j �Wk 
 Ek ����j�m

zj sat ��� ��� � �P �R 

Wm

k	��k �	j Gk �W 
Wj �Gj �Ej ���j�m

kmj	� zj sat ��� ��� � �P �R�W �
Wm

j	�Gj �
Vm

j	� Ej �

Here� kmj	� zj denotes any program that can be obtained from z� k � � � k zm
by adding curly brackets� The ��rst� premise ensures that whenever process
j busy�waits in a state s such that s j� �W �Wj � then there is at least one
other process which has not terminated and is not busy�waiting� This rule is
�deducible� from the basic rules of LSPu �

� Examples

Examples where a logic of this type is employed for the development of non�
trivial programs can be found in �St����� �St���a�� �XH�
�� Moreover� it is
shown in �St����� �St���b� how auxiliary variables can be used both as a speci�
�cation tool to eliminate undesirable implementations� and as a veri�cation tool
to make it possible to prove that an already �nished program satis�es a certain
speci�cation� The object here is to apply LSPu to prove fair termination�

��



Let z� and z� denote the programs

b� � true� while �b do skip od�

It should be obvious that

j�u fz� k z�g sat �fbg� f g�� � �true�
�

b� b� false� true� true��

This follows easily by the consequence� and parallel�rules� if

�u z� sat �fbg� f g�� � �true�
�

b� b� false�
�

b� b� b��

�u z� sat �fbg� f g�� � �true�
�

b� b��b�
�

b� b� true��

�For any speci�ed program �� �u � i� � is provable in LSPu �� The �rst of these
speci�ed programs can be deduced by the consequence� and assignment�rules�
The second follows by the pre�� consequence� and while�rules� since

�u skip sat �fbg� f g�� � ��b�
�

b� b��b�
�

b� b� true��

and it is clear that

�
�

b ��
�

b� b� j ��
�

b� b� � b� j �
�

b� b�

is well�founded�

A slightly more complicated synchronisation is dealt with in the next ex�
ample� Let z� and z� denote the programs

while n � � do

if n mod 
 � � then n� � n�� else skip �

od�

while n � � do

if n mod 
 � � then n� � n�� else skip �

od�

Given that n � �� the program z� may reduce the value of n by � if n is even�
while z� may subtract � from n if n is odd� Thus� it should be clear that

j�u fz� k z�g sat �fng� f g�� � �true�n �
�
n � false� true�n � ���

Moreover� this follows by the consequence� and parallel�rules if

�u z� sat �fng� f g�� � �true�n �
�
n �n mod 
 � � � n � ��n �

�
n �n � ���

�u z� sat �fng� f g�� � �true�n �
�
n �n mod 
 � � � n � ��n �

�
n �n � ���

The �rst of these can be deduced by the pre�� consequence�� assignment�� if�
and while�rules since it can easily be proved that z��s if�statement satis�es

��



�fng� f g�� � �n � ��n �
�
n �

n mod 
 � � � n � ��n �
�
n �

�
n mod
 � �� n �

�
n �

and

�
n� � � �

�
n mod
 � �� n �

�
n � �

�n �
�
n � j �n �

�
n ��n mod 
 � � 
 n � ��� j �n �

�
n �

is well�founded� Not surprisingly� z� can be proved to satisfy its speci�cation
in a similar way�

Finally� to indicate how LSPu can be used for the design of programs in
a top�down style� let g be a function� such that j� �y � � Z � g�y� � �� and
consider the task of designing a program z which satis�es

�u z sat �fxg� f g�� � �true� false� false� true� g�x � � ���

One sensible decomposition strategy is two split the searching into two parallel
processes z� and z� dealing with respectively the non�negative and the negative
integers� This means that z should be of the form

blo f �B in f � � false� fz� k z�g olb�

where the Boolean �ag f is to be switched on when the appropriate argument
is found� Clearly� any atomic step after f has been initialised is required to
satisfy the binary invariant

�
�

f � f � � �f � g�x � � ���

from now on denoted by in� Moreover� it follows by the e�ect�� consequence��
assignment�� sequential� and block�rules that this is a valid implementation of
z if

�u fz� k z�g sat �fx � f g� f g�� � ��f � in� false� in� f ��

which again can be deduced by the consequence� and parallel�rules if

� z� sat �fx � f g� f g�� � ��f � in� ��y � Z � y � �� g�y� �� �� � �f � in� f ��
� z� sat �fx � f g� f g�� � ��f � in� ��y � Z � y � �� g�y� �� �� � �f � in� f ��

Moreover� the consequence�� assignment�� sequential� and block�rules imply
that

blo x ��Z in x �� � �� z �� olb

is a valid decomposition of z� if

z �� sat �fx � f � x
�g� f g�� � ��f � x � � �� in � x � � x ��

��y � Z � y � �� g�y� �� �� � �f � in� f ��

��



Finally� since

��
�

f �
�

x �� � � ��y � Z � � � y �
�

x �� f �y� �� �� �

�g�
�

x �� � �� f � � �g�
�

x �� �� �� x � �
�

x � ����� �

in j �x �
�
x ��f �

�

f � � x � �
�

x � ���y � � Z � y � � � g�y� � � 
 f �� j in

is well�founded� it can be deduced by the pre�� consequence�� assignment�� if�
and while�rules that

while �f do if g�x �� � � then f � x � � true� x � else x �� � x � � � � od

is a correct implementation of z ��� A program which implements z� can be
designed in a similar style�

� Discussion

Rules for proving fair termination with respect to a set of transition functions
ff�� � � � � fmg assosiated withm processes are described in �LPS���� A state pred�
icate is used to characterise helpful directions in the same way as LSPu employs
a wait�condition to select helpful execution paths of the while�statement�s body�
Rules for fair termination with respect to a set of transition functions are also
given in �APS�
�� These rules are based upon explicit scheduling�

Explicit scheduling is also used in �OA���� but in a less abstract setting� Un�
fortunately� the method depends upon a freedom from interference test which
can be carried out only after the component processes have been implemented
and their proofs have been constructed� This is unacceptable when designing
large software products in a top�down style� because erroneous design deci�
sions� taken early in the design process� may remain undetected until the whole
program is complete� In the worst case� everything that depends upon such
mistakes will have to be thrown away�

To avoid problems of this type a proof method should satisfy what is known
as the principle of compositionality �dR���� �Zwi��� ! namely that a program�s
speci�cation always can be veri�ed on the basis of the speci�cations of its
constituent components� without knowledge of the interior program structure
of those components�

The methods in �BKP�
� and �Lam��� are based upon temporal logic� They
are both compositional and non�transformational� Moreover� they can be used
to prove total correctness with respect to the type of programming language
discussed above� However� due to lack of published examples� it is not clear
how useful they are when it comes to practical program development� One
obvious di�erence� with respect to the approach presented in this paper� is
that these logics have a much wider application area ! they can for example
be used for the design of non�terminating programs with respect to general
liveness properties� Some very general compositional parallel�rules are proposed
in �Sta��� and �AL����

��



LSP is a compositional formal method specially designed for top�down devel�
opment of totally correct shared�state parallel programs� LSP can be thought
of as a compositional reformulation of the Owicki�Gries method �OG���� and
also as an extension of Jones� rely�guarantee approach �Jon�	�� A related sys�
tem is described in �XH���� Examples where LSP is used for the development
of non�trivial programs can be found in �St����� �St���a�� In �St���� it is also
explained how LSP can be extended to deal with partial functions and guarded
commands�

This paper shows how LSP can be modi�ed to allow for the design of pro�
grams� whose correctness depends upon busy�waiting� Only unconditional fair�
ness is discussed here� However� systems for weak and strong fairness can be
formulated in a similar style� The author is currently working on a paper
which deals with both unconditional� weak and strong fairness� This paper
will include soundness and semantic completeness proofs for the formal system
presented above�

� Acknowledgements

I would like to thank my PhD supervisor Cli� B� Jones for his help and support�
I am also indebted to Howard Barringer and Xu Qiwen� A special thanks goes
to Mathai Joseph whose comments led to many improvements�

The research reported in this paper was carried out at the Department
of Computer Science� Manchester University with �nancial support from the
Norwegian Research Council for Science and the Humanities and the Wolfson
Foundation�

References

�Acz�	� P� Aczel� On an inference rule for parallel composition� Unpub�
lished Paper� February ���	�

�AL��� M� Abadi and L� Lamport� Composing speci�cations� Technical
Report ��� Digital� Palo Alto� �����

�APS�
� K� R� Apt� A� Pnueli� and J� Stavi� Fair termination revisited with
delay� Theoretical Computer Science� 		���"�
� ���
�

�BKP�
� H� Barringer� R� Kuiper� and A� Pnueli� Now you may compose
temporal logic speci�cations� In Proc� Sixteenth ACM Symposium

on Theory of Computing� pages ��"�	� ���
�

�dR��� W� P� de Roever� The quest for compositionality� formal models
in programming� In F�J� Neuhold and C� Chroust� editors� Proc�
IFIP 	
� pages ���"
��� �����

��



�GFMdR��� O� Grumberg� N� Francez� J�A� Makowsky� andW� P� de Roever� A
proof rule for fair termination of guarded commands� Information

and Control� ����	"��
� �����

�GPSS��� D� Gabbay� A� Pnueli� S� Shelah� and J� Stavi� On the temporal
analysis of fairness� In Proc� �th ACM�POPL� �����

�Jon�	� C� B� Jones� Speci�cation and design of �parallel� programs� In
Mason� R�E�A�� editor� Proc� Information Processing 	�� pages
	
�"		�� ���	�

�Jon��� C� B� Jones� Systematic Software Development Using VDM� Sec�

ond Edition� Prentice�Hall International� �����

�Lam��� L� Lamport� An axiomatic semantics of concurrent programming
languages� In K� R� Apt� editor� Logics and Models of Concurrent

Systems� NATO ASI Series� Vol� F�	� �����

�LPS��� D� Lehmann� A� Pnueli� and J� Stavi� Impartiality� justice and
fairness� The ethics of concurrent termination� In Proc� Automata�

Languages� and Programming� Lecture Notes in Computer Science




� pages 
�
"
��� �����

�OA��� E� R� Olderog and K� R� Apt� Fairness in parallel programs� The
transformational approach� Technical Report ����� Liens� �����

�OG��� S� Owicki and D� Gries� An axiomatic proof technique for parallel
programs� Acta Informatica� ��	��"	
�� �����

�Par��� D� Park� A predicate transformer for weak fair iteration� In Proc�
�th IBM Symp� on Math� Foundation of Computer Science� �����

�Sta��� E� W� Stark� A proof technique for rely�guarantee properties� In
S�N� Maheshwari� editor� Proc� 
th Conference on the Foundation

of Software Technology and Theoretical Computer Science� Lecture

Notes in Computer Science ���� pages 	��"	��� �����

�St���� K� St�len� Development of Parallel Programs on Shared Data�

Structures� PhD thesis� University of Manchester� ����� Also
available as technical report UMCS�������� University of Manch�
ester�

�St���a� K� St�len� An attempt to reason about shared�state concurrency
in the style of VDM� In S� Prehn and W�J� Toetenel� editors� Proc�
VDM��
� Lecture Notes in Computer Science 

�� pages 	

"	

�
����� Also available as technical report UMCS�������� University
of Manchester�


�



�St���b� K� St�len� A method for the development of totally correct shared�
state parallel programs� In J�C�M� Baeten and J�F� Groote� edi�
tors� Proc� CONCUR��
� Lecture Notes in Computer Science 
���
pages ���"�
�� ����� Also available as technical report UMCS����
���� University of Manchester�

�XH��� Q� Xu and J� He� A theory of state�based parallel programming
by re�nement�part �� In J� Morris and R�C� Shaw� editors� Proc�
�th BCS�FACS Re�nement Workshop� �����

�XH�
� Q� Xu and J� He� A case study in formally developing state�based
parallel programs ! the dutch national torus� In C�B� Jones and
R�C� Shaw� editors� Proc� 
th BCS�FACS Re�nement Workshop�
���
�

�Zwi��� J� Zwiers� Compositionality� Concurrency and Partial Correct�

ness� Proof Theories for Networks of Processes and Their Re�

lationship� volume 	
� of Lecture Notes in Computer Science�
Springer�Verlag �����

Additional Rules Needed to Prove Semantic Completeness

if� �

�
P� � R � P�

skip sat ��� ��� � �P�� false� false�G �P� � E��
z� sat ��� ��� � �P� � b�R�W �G �E��
z� sat ��� ��� � �P� � �b�R�W �G �E��

if b then z� else z� � sat ��� ��� � �P��R�W �G �R� j E� j E��

block� �

z sat ��� ��� � �P �R �
Vn

j	� xj �
�
xj �W �G �E �

blo x��T�� � � � � xn �Tn in z olb sat �� n
Sn

j	�fxjg� ��� � �P �R�W �G �E �

elimination� �
x �� �

z sat ��� ��� � �P �R�W �G �E �

z sat ��� � n fxg�� � ��x ��P ��
�
x � �x ��R�W �G �E �

pre� �
z sat ��� ��� � �P �R�W �G �E �

z sat ��� ��� � �P �R�W �G �
�

P �E �


�



Some Useful Adaptation Rules

e�ect� �
z sat ��� ��� � �P �R�W �G �E �

z sat ��� ��� � �P �R�W �G �E � �R 
G���

rely� �
z sat ��� ��� � �P �R�W �G �E �

z sat ��� ��� � �P �R��W �G �E �

invariant� �
P � K
�

K ��R 
G�� K

z sat ��� ��� � �P �R�W �G �E �

z sat ��� ��� � �P �R�K �W �
�

K �G �E �

stutter� �
z sat ��� ��� � �P �R�W �G �E �

z sat ��� ��� � �P �R 
 I����W �G �E �

glo� �
x �� � 	 �

z sat ��� ��� � �P �R�W �G �E �

z sat �� 	 fxg� ��� � �P �R�W �G � x �
�
x �E �

aux� �
x �� � 	 �

z sat ��� ��� � �P �R�W �G �E �

z sat ��� � 	 fxg�� � �P �R�W �G � x �
�
x �E �






