
Measuring the Effect Of Formalization

KETIL STØLEN, PETER MOHN*
OECD Halden Reactor Project, Institute for Energy Technology
Halden, Norway
*)the second author is on leave from the Swiss Federal Nuclear Safety Inspector-

ate, Villigen, Switzerland

Abstract

We present an ongoing research activity concerned with measuring the effect of an in-
creased level of formalization in software development. We summarize the experiences
from a first experimental development. Based on these experiences, we discuss a number
of technical issues; in particular, problems connected to metrics based on fault reports.
First of all, what is a fault? Secondly, how should the fault counting be integrated in the
development process? Thirdly, any reasonable definition of fault depends on a notion of
satisfaction. Hence, we must address the question: What does it mean for a specification
or an implementation to satisfy a requirement imposed by a more high-level specifica-
tion?

1. Introduction

The OECD Halden Reactor Project (HRP) is an international cooperative effort involving
20 countries and more than 100 nuclear organizations. The research of the HRP is special-
ized towards improved safety in the design and operation of nuclear power plants. The use
of formal descriptions in software development, validation and verification is an active
research direction at the HRP. Earlier this research was specialized towards small safety
critical systems with very high reliability requirements. More recently, the scope has been
extended to cover also other kinds of software; in particular, distributed systems for plant
control and supervision. HRP member organizations have identified the need for this kind
of research. They have also identified the need to know more about the practical conse-
quences and effects of an increased level of formalization in software development. This
paper describes our attempts to tackle problems connected to the latter issue.

Arguments in favour of an increased level of formalization in software development
can easily be formulated. For example:

• Formalization of requirements raises questions whose answers may eliminate weak-
nesses and inconsistencies.

• Formal requirements are easier to analyse with respect to consistency, completeness
and unintended effects than informal ones.

• Formal requirements reduce the number of design faults because the developers
obtain a better understanding of what the requirements actually mean.

• Formalization allows faults to be identified early in the development process.

• Formalization is a prerequisite for mechanized validation in the form of animation,
exhaustive exploration and mathematical reasoning.

• Formalization allows precise strategies for decomposition and design.



These arguments all sound reasonable, but are they valid in practise? And if so, are there
other less desirable effects of formalization? For example, does a higher level of formal-
ization increase software development and maintenance costs? These questions are not
easily answered. We are not aware of convincing experimental evidence with respect to
the effects of formalization. In the literature there is not much to find on this subject. Two
notable exceptions are [1], [2]. They present results from small scale experiments where
conventional developments are related to developments based on formal development
methods like VDM [3] and B [4]. Both papers report on evidence in favour of increased
formalization. This evidence is, however, weak. As pointed out by [1]: “Conclusions
drawn from this experiment should be moderated by the small size of the development
and the correspondingly small number of faults detected. The development team was also
small and staffed by self-selected individuals who, being keen to make a success of the
experiment, were perhaps better motivated than average. It would not be wise to extrap-
olate these results to larger projects.”

In 1997 the HRP initiated a research activity which, in addition to several other
tasks, tries to address issues related to the effects of formalization. This paper sums-up
some preliminary experiences from this research activity; in particular, based on what we
learnt from an experimental development, it identifies and discusses problems connected
to metrics based on fault reports:

• In order to report on faults we need a clear definition of what a fault is. This definition
must be such that it does not force the alterations resulting from the kind of trial/fail-
ure experiments that is a desirable part of any software development to be counted as
faults. Moreover, this definition should not depend on a software process that does not
mirror how software is developed in practise.

• Any definition of fault is highly dependent on some notion of satisfaction: what does
it mean that a specification or an implementation satisfies some requirement imposed
by a more abstract specification? This notion of satisfaction must be sufficiently lib-
eral to allow software to be developed in a natural manner; it must be clearly defined,
and it must be expressed in such a way that it can be understood and used by ordinary
systems engineers.

The remainder of this paper is divided into six sections: Section 2 gives some back-
ground on formal techniques (FTs) and computer aided systems engineering (CASE-)
tools; Section 3 describes our area of specialization --- the kind of systems, specification
techniques and tools we are interested in; Section 4 outlines the set-up of an experimental
system development; Section 5 summarises the conclusions from this development; Sec-
tion 6 discusses practical problems related to fault reporting and the comparison of differ-
ent kinds of software developments; Section 7 draws some conclusions and describes
future plans.

2. Formal Techniques and CASE-Tools

There is already a multitude of formal languages and notations available. Most FTs are
tuned towards particular system domains or specialized application areas. They can be
classified into three main categories:

• Semi-Formal Description Techniques (SFDTs).
They are called semi-formal because the grammar and meaning of specifications ex-
pressed with the help of these techniques are not always fully defined. Typical exam-
ples of SFDTs are the Unified Modelling Language (UML) [5], the Object Modelling
Technique (OMT) [6], and Object-Oriented Software Engineering (OOSE) [7].



• Formal Description Techniques (FDTs).
The FDTs differ from the SFDTs in that their specifications have a well-defined gram-
mar and a meaning captured in some well-understood mathematical structure. Typical
examples of FDTs are the Specification and Description Language (SDL) [8], State-
charts [9], the Language of Temporal Ordering Specification (LOTOS) [10], and Mes-
sage Sequence Charts (MSC) [11].

• Formal Development Methods (FDMs).
The FDMs differ from the FDTs in their support for the logical deduction of implemen-
tations from specifications. Any FDM contains a FDT for specification purposes. Typ-
ical examples of FDMs are the Vienna Development Method (VDM) [3], Unity [12],
the Temporal Logic of Actions (TLA) [13], and B [4].

It is widely recognized that the successful use of FTs in software development is not
possible without effective tool support during the whole development cycle. Tools that
underpin software development throughout the development process are known as
CASE-tools. CASE-tools based on SFDTs and FDTs are already commercially important
within several fields. Well-known examples of such CASE-tools are Cinderella, Object-
GEODE, ObjectTime, Rational Rose, Rhapsody, SDT and Statemate. Commercial
CASE-tools for FDMs are also becoming more common these days. Atelier B, the B-
Toolkit and the VDM Toolbox are examples of such. CASE-tools based on FTs typically
offer:

• Editors specialized towards the formal specification languages on which the respec-
tive CASE-tools are based; most CASE-tools employ several specification languages
--- for example, one language for the requirements capture and another language for
the design.

• Syntax and type-checkers.

• Automatic generation of executable prototypes from specifications.

• User-friendly, often graphical simulators (animators) allowing bugs and inconsisten-
cies in requirements to be discovered and mended early.

• Automatic generation of test-scenarios from requirements.

• Facilities for exhaustive exploration (also known as model checking) allowing the
automatic detection of undesirable features like for instance deadlock, livelock etc.;
some tools for exhaustive exploration also support verification of design with respect
to requirements.

• Automatic generation of proof obligations. Such tools normally also offer facilities
for the automatic and/or interactive verification of proof-obligations.

• Complete code-generation of design towards commercially important programming
languages like C and C++.

3. Area of Interest

As mentioned in the introduction, the research activity on which this paper builds is con-
cerned with several tasks. One objective is to develop strategies to measure or estimate
the effect of formalization, and to try out these strategies in real system developments at
the HRP. Other objectives include giving recommendations with respect to:

• the training of personell in the use of formal approaches;



• the choice and use of FTs and CASE-tools;

• the integration of FTs in a conventional software process.

This paper is concerned only with the first objective.
Industrially interesting FTs are always tuned towards particular system domains or

specialized application areas. Therefore, it seemed natural to specialize our research ac-
tivity to one particular application area, one particular kind of FTs, and one particular kind
of CASE-tools. We decided to concentrate on:

• Systems in which interaction and communication are essential features. The compo-
nents may be distributed in space, but this is not a requirement: Logical concurrency
is sufficient. The systems will typically be real-time and based on object-oriented
technology.

• FDTs supplemented by SFDTs when this falls natural. Formal verification of design
steps in the style of FDMs will not be considered. The requirements capture will be
based on sequence charts (as, for example, in MSC or UML), and the design will be
based on communicating state machines (as, for example, in SDL or Statecharts). We
will also use class-diagrams (as, for example, in OMT or UML).

• State-of-the-art commercial CASE-tools supporting the whole development cycle.
The CASE-tools should offer editors for the chosen FTs, facilities for verification and
validation based on exhaustive exploration, and complete code-generation from
design to commercial platforms.

We refer to [14] for a more detailed motivation for the specialization of our research ac-
tivity. [15] compares eleven specification languages, including the ones mentioned above,
in a more general setting. [16] evaluates leading tools for interactive verification and ex-
haustive exploration.

4. Set-up of Experiment

Since we had little experience with empirical experimentation connected to software de-
velopments, we decided to try out the metrics and techniques for the collection of exper-
imental data employed in [1] in a real system development at the HRP. [1] is concerned
with FDMs like VDM and B. However, the metrics and data collection techniques of [1]
carry over to our area of interest, straightforwardly. The metrics and data collection tech-
niques of [1] are summarized below:

• Four metrics are used to compare a formal development process with a conventional
one:

Number of faults per thousand lines of code found during unit and integration tests.
Number of faults per thousand lines of code found during validation test.
Number of faults per thousand lines of code found during customer use.
Person months of effort per thousand lines of code produced.

• Faults are registered throughout the development process to compare the relative
effectiveness of the various stages of the formal development process. For each fault,
it is recorded at which stage/activity the fault was introduced and at which stage/activ-
ity it was discovered.

• The notion of fault is defined as follows: A fault is found when a change is required to
a design decision made at an earlier development stage. A design made and corrected
within the same stage is not considered as a fault.



The system development in which these metrics and data collection techniques of [1] were
tried out, was connected to another HRP research activity [17] aiming at the development
of an analytic design methodology supported by a computerized tool, the so-called FAME
tool. The task of the FAME tool is to help determine the optimal allocation of tasks be-
tween man and machine in the control of advanced technical processes. Our initial system
development was to design a communication manager for this tool --- referred to as the
FAME Communication Manager (FCM) in the sequel.

Five persons were involved in the FCM development:

• Two research scientists who worked out the informal system requirements and there-
after were available for questions and discussions concerning the formalisation,
design and implementation of these requirements.

• Two systems engineers responsible for the actual development.

• One FT expert who gave advice on the use and integration of FTs, and supervised the
collection of experimental data.

With the exception of the latter, none of the participants had earlier experience in
the use of FTs. Moreover, the FT expert had used FTs only in system developments of
academic size. None of the participants had background from the use of commercial
CASE-tools. The following FTs were employed:

• The use-case diagrams of UML, the sequence charts of MSC --- including hierarchi-
cal ones, and OMT class-diagrams to capture the abstract requirements.

• SDL with C embedded to describe the design.

The tool support was SDT (from the Swedish company Telelogic). We employed
the SDT facilities for editing, animation, exhaustive exploration and code-generation. The
FCM development was based on a waterfall process. This was in accordance with [1] and
also consistent with the software quality assurance manual at the HRP [18] (which is
based on the international standard ISO 9000-3).

5. Preliminary Results from Experiment

As already mentioned, one objective with the FCM development was to test out the met-
rics and data collection techniques of [1] in a real system development. Thereby we hoped
to gain a better understanding of their suitability and usefulness in a practical context. The
system development was successfully completed and resulted in about 10 000 lines of C-
code (adjusted number correcting for automatic code generation). The experimental re-
sults (together with the experiences and recommendations connected to the other objec-
tives of the research activity) will be published in a technical report [19] currently in
preparation. The main conclusions with respect to the experimentation is summed up be-
low:

• The experimental data gained from the FCM development is not very valuable as
such. There are several reasons for this:

The FCM is a prototype to be used in a scientific experiment. It was therefore not
tested out and will not be maintained in the same way as a commercial product.

A very large percentage of the person hours was invested in learning to use the FTs
and, in particular, SDT.

There was not a clear separation between the scientists responsible for the experi-
ment and the systems engineers who carried out the software development.



Experimental data collected from only one, relatively small software development is
of course insufficient.

• We identified several problems connected to metrics, fault counting and notions for
satisfaction. The most important of these are discussed below.

6. Discussion

To investigate the effects of formalization by experimental means is a very challenging
task. This we already knew at the start up. The FCM development made this even clearer;
in particular, it highlighted a number of problem areas. Some very important ones are dis-
cussed below.

6.1 Measuring the right thing

To compare formal and conventional development processes, great care must be taken to
ensure that we measure the effects of formalization, and not the effects of something else.
One central question is: To what degree should the activities in the formal development
process be mirrored in the conventional one, and vice versa? The answer depends, of
course, on the exact purpose of the experiment. This purpose must be clearly defined, and
both the formal and conventional developments must be configured with respect to this
purpose. If we are interested only in the effects of formalization, it seems the experiments
should be organized in such a way that the formal and conventional developments differ
with respect to the formalization and the immediate effects of the formalization only.

For example, in the FCM development, the formal and informal requirements spec-
ification were validated against each other based on a review where all involved parties
were present and forced to decide whether they accepted the specified requirements as
correct or not. In those cases where a mistake was identified, the involved parties were
required to agree on how it should be corrected. This proved very efficient, and consider-
ably improved both the informal and the formal requirements specification. Such a review
would of course be helpful also in a conventional development, although there would then
be only an informal requirements specification on which the review could be based. In or-
der to compare a formal development process with such a review at the requirements level
with a conventional one, it seems reasonable that also the conventional process has such
an activity.

6.2 Integration in the software process

To define a fault is not as easy as one might think. Anyone with at least some experience
from software engineering knows that both specification and programming involves a lot
of experimentation based on trials and failures. Clearly, we need a definition of fault that
does not force the systems engineers to report on the large number of alterations resulting
from this kind of activities --- activities that are desirable and play an important role in
any practical software development. The fault definition of [1], from now on referred to
as the definition of fault, seems well-suited in this respect. Since a change to a design de-
cision made and corrected within the same development stage does not count as a fault,
the creative experimentation mentioned above is not constrained.

The FCM development was based on a waterfall process. Initially, we intended to
complete each stage before the next was started up, since this is consistent with the defi-
nition of a fault. In the FCM development the requirements stage was completed before
the other stages were initiated. However, for practical reasons, the design and implemen-
tation stages overlapped in time. Does this indicate that the definition of fault has to be



modified? We do not think so. The problem was not really the definition of fault, but rath-
er our very strict implementation of the waterfall process. The overlap of the development
stages occurred because the development of clearly separated sub-components progressed
at different speeds. In our next experimental system development we will try to adapt our
routines for the collection of faults to an iterative, more flexible development process in
the tradition of [20], [7].

6.3 Satisfaction

The dependency on the development process is, however, not the only problematic aspect
connected to fault reporting. We may view the activities within one development cycle as
a sequence of steps from one specification to the next where the final implementation is
seen as just another specification written in a format suitable for efficient mechanized ex-
ecution. In order to decide whether we have found a fault or not, we need to know what it
means for a specification to satisfy a requirement or design decision imposed by a more
abstract specification. In other words, we need a clear understanding of the term “satisfy”
--- or, more scientifically, a well-defined notion of satisfaction.

The FCM development made it perfectly clear that in the context of MSC, OMT,
SDL and UML there is no generally accepted notion of satisfaction. In fact, we are not
aware of any design methodology based on this kind of FTs that defines the notion of sat-
isfaction in a, for our purposes, fully satisfactory manner.

In the context of step-wise software development the term “refinement” is often
used instead of “satisfaction”. A specification A can be refined into a specification B if
the specification B satisfies A. Within the FDM community there is a large literature on
the formalization of refinement principles. Pioneering papers were published in the early
70ies [21], [22], [23]. These papers were mainly concerned with the development of se-
quential non-interactive software. Recent proposals concerned with the formalization of
refinement are directed towards more complex systems --- in particular, systems based on
interaction and concurrency.

FDMs for interactive and concurrent systems like TLA [24] and Focus [25] distin-
guish between three notions of refinement of increasing generality, namely property re-
finement, interface refinement and conditional refinement. Property refinement allows a
specification to be replaced by another specification that imposes additional functional
and non-functional properties. Property refinement supports step-wise requirements engi-
neering and incremental system development in the sense that new requirements and
properties can be added to the specification in the order they are captured and formalized.
Property refinement can be used to reduce the number of behaviours allowed by a speci-
fication. Property refinement does not allow behaviours to be added; nor does it allow
modifications to the external interface of a specification. Hence, property refinement
characterizes what it means to reduce under-specification.

If software developments were based on property refinement alone, the inability to
change the external interfaces would basically enforce the same level of abstraction
throughout the whole development. As a result, the developments would often be unnec-
essarily complex and inflexible. To avoid this, we may use the notion of interface refine-
ment.

Interface refinement is a generalization of property refinement allowing a specifica-
tion to be replaced by one that has a different syntactic interface under the condition that
all the runs of the refined specification can be translated into runs of the original one. In-
terface refinement supports the replacement of abstract data types by more implementa-
tion dependent ones, it allows the granularity of interaction to be modified, and it supports
changes to the communication structure in the sense that, for example, one channel can



be represented by several channels, or vice versa. Interface refinement also captures what
it means to adapt the interface of an already completed system to allow reuse in another
environment or software development.

In the final phases of a system development, many implementation dependent con-
straints and restrictions must be considered. This may require the introduction of addition-
al environment assumptions. Unfortunately, property and interface refinement do not
support this. Instead, we may use the notion of conditional refinement, which can be un-
derstood as property or interface refinement with respect to additional conditions or as-
sumptions about the environment in which the specified component is supposed to run.
Conditional refinement supports the transition from system specifications based on un-
bounded resources (unbounded buffers, memories etc.) to system specifications based on
bounded resources. It allows purely asynchronous communication to be replaced by hand-
shake or time-synchronous communication, and it supports the introduction of exception
handling.

In TLA specifications are logical formulas written in linear time temporal logic. If
A is the more abstract specification and B is the more concrete specification then the three
notions of refinement described above are all captured by the following formula:

C /\ B => A

Hence, in order to verify a step of refinement it is enough to show that the abstract spec-
ification A is a logical implication of the logical conjunction of the concrete specification
B and some additional formula C. In the case of property refinement, C is logically equiv-
alent to true and therefore not needed; in the case of interface refinement C characterizes
the relationship between the concrete and abstract interfaces; in the case of conditional re-
finement, C also formalizes the additional environment assumptions. Hence, if we think
of A as the abstract requirement specification and B as the concrete implementation, then
C describes their relationship and gives together with A the required system documenta-
tion.

In Focus this notion of refinement can be described graphically as in Figure 1. The
downwards mapping D translates the abstract input to the concrete input; the upwards
mapping U translates the concrete output to the abstract output; the condition C imposes
additional environment assumptions; the arrow from the output of A to C indicates that
the assumption about future inputs may depend on what A has produced as output so far.

The close relationship between Focus and SDL is well-documented in the literature
[26], [27]; in fact, Focus can be seen as a formal foundation on which a SDL based meth-
odology can be built. For example, the definition of refinement given above can easily be
translated into a SDL setting (as proposed by [28]). Assume A and B are SDL specifica-
tions, then B is a refinement of A if we can specify C, D and U in SDL such that for any
abstract input history generated by C, the abstract output history generated by the block
consisting of the piped composition of the SDL specifications D, B, U is a possible output
history of A.

The interesting question at this point is of course: Can we base our definition of fault
on this notion of refinement? This is not quite clear. Firstly, this definition is certainly not
sufficient on its own. The reason is that it considers only the external black-box behaviour
--- in other words, requirements on the externally observable behaviour. Hence, so-called
glass-box requirements, namely requirements on the internal design that have no effect on
the external behaviour, are not captured. This may have nontrivial consequences.



Figure 1: Graphical representation of refinement

For example, in the FCM development we recorded, on the one hand, a very low
number of design faults with respect to the external black-box behaviour of the require-
ments specification. Hence, if we define a notion of satisfaction that considers only the
external black-box behaviour, this could be interpreted as experimental evidence for the
claim that formalization reduces the number of design faults (there are of course a wide
range of alternative explanations). On the other hand, the organization and relationship of
classes and objects in our design specification was not at all in accordance with the re-
quirements imposed by the class-diagrams of the requirements specification. Hence, if we
had used a notion of satisfaction requiring the glass-box constraints imposed by these
class-diagrams to be mirrored at the design level, we would have recorded a very high
number of design faults, and our experiment could be interpreted as experimental evi-
dence for the invalidity of the claim that formalization reduces the number of design faults
(again there are of course alternative explanations).

Secondly, although we believe that this definition, with some minor generalizations,
is well-suited to describe what it means for an SDL specification to refine the black-box
behaviour of another SDL specification, we are less convinced that this definition cap-
tures the relationship between two MSC specifications, or between a MSC specification
and a SDL specification. The Focus definition works well for SDL because a SDL spec-
ification, as a specification in TLA or Focus, describes the set of all allowed behaviours.
Under the assumption that C, D and U have been specified correctly, we are satisfied with
the SDL specification B from a black-box point of view, if its set of behaviours is a subset
of the behaviours allowed by the SDL specification A with respect to C, D and U. The
SDL specification A may, however, allow additional behaviours. An MSC specification,
on the other hand, describes a set of behaviours (example runs) the system is required to
support --- at least this seems to be consistent with how the MSC language is used, tradi-
tionally.

The problem areas identified above are important. They are of course not the only
ones. For example, the issue of defining and selecting the right metrics on size, effort, and
the various quality characteristics has not been mentioned. How to motivate the systems

A

B

D U

C

concrete outputconcrete input

abstract outputabstract input

downwards
mapping

upwards
mapping

concrete specification

abstract specification

environment
assumption



engineers to provide the required fault reports etc. in a consistent manner, is another
slightly different, but nevertheless very important, issue.

7. Conclusions

The lack of experimental evidence for scientific claims seems to be a general problem
within computer science. [29] argues: “There are plenty of computer science theories that
haven’t been tested. For instance, functional programming, object-oriented programming,
and formal methods are all thought to improve programmer productivity, program quality
or both. It is surprising that none of these obviously important claims have ever been test-
ed systematically, even they are 30 years old and a lot of effort has gone into developing
programming languages and formal techniques.” That the level of experimental evidence
is much lower in computer science than in the more classical sciences has been confirmed
by several studies. In a random sample of all the papers the ACM published in 1993, [30]
found that 40 percent of the papers with claims that needed empirical support had none at
all. In software related journals, this fraction was 50 percent. The same study also ana-
lysed a non-computer science journal, Optical Engineering, and found that the fraction of
papers lacking quantitative evaluation was merely 15 percent. [31] found similar results.

To set up experiments and collect experimental data is not difficult. To do this in a
way such that interesting and scientifically valid conclusions can be drawn is, however,
challenging. This was highlighted by the FCM development. [31] classifies experimental
approaches into three main categories:

• Observational method --- collects relevant data as a software development develops.

• Historical method --- collects data from developments that have already been com-
pleted using existing data.

• Controlled method --- provides for multiple instances of an observation in order to
provide for statistical validity of results.

The method employed in the experiment on which this paper reports belongs to the first
category. This does not necessarily mean that future activities within our research activity
will be restricted to observational methods.

One important objective of our research activity is to come up with a strategy allow-
ing at least some aspects connected to the effects of formalization to be measured. Hence,
what we expect to achieve are better techniques and strategies for this kind of experi-
ments.We will try out these techniques and strategies in software developments at the
HRP. The empirical data collected from these HRP experiments will, however, hardly be
sufficient as experimental evidence for very general claims. There are several reasons for
this:

• The HRP is a research project and not a software house. System developments at the
HRP normally result in prototypes that are used for scientific purposes only. The
resulting prototypes are not tested out and maintained in the same way as the products
of commercial tool vendors. Hence, the data collected from our experiments will not
give a realistic picture (except, of course, for HRP like research projects).

• System developments at the HRP are usually rather small, and there are not very
many of them.

• There should be a clear separation between the scientists who set up and run the
experiments, and the system engineers who carry out the developments. This is not
easily achievable at the HRP.



Hence, in order to provide significant experimental evidence with respect to the effects of
formalization in an industrial context, we need to find commercial partners willing to pro-
vide the required amounts of experimental data.

Acknowledgements
Andreas Bye, Tor Steinar Brendeford and Håkon Sandmark participated in the develop-
ment of the FCM. We are grateful for their positive and open-minded attitude. Børge
Haugset, Tore Willy Karlsen and Helena Olausson aided us in the evaluation of CASE-
tools. Øystein Haugen, Terje Sivertsen and Wenhui Zhang read an earlier version of this
paper and provided valuable feedback.

References

[1] BICARREGUI, J., DICK, J., WOODS, E. Quantitative analysis of an applica-
tion of formal methods. In Proc. FME96, LNCS 1051, pages 60-73, 1996.

[2] DRAPER, J., TREHARNE, H., BOYCE, T., ORMSBY, B. Evaluating the B-
method on an avionics example. In Proc. DAISA96, pages 89-97, European
Space Agency, 1996.

[3] JONES, C.B. Systematic software development using VDM, second edition.
Prentice Hall, 1990.

[4] ABRIAL, J.R. The B book: assigning programs to meaning. Cambridge Univer-
sity Press, 1996.

[5] UML proposal to the object management group, version 1.1, September 1,
1997.

[6] RUMBAUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F., LORENSEN,
W. Object-oriented modelling and design.Prentice Hall, 1991.

[7] JACOBSON, I., CHRISTERSON, M., JONSSON, P., OEVERGARD, G.
Object-oriented software engineering --- a use case driven approach, Addison-
Wesley, 1992.

[8] Recommendation Z.100 - CCITT specification and description language (SDL).
ITU, 1993.

[9] HAREL, D. STATECHARTS: a visual formalism for complex systems. Sci-
ence of Computer Programming 8:231-274, 1987.

[10] LOTOS- A formal description technique based on the temporal ordering of
observational behaviour. ISO/IEC 8807, International Organization for Stand-
ardization, 1989.

[11] Recommendation Z.120 - Message Sequence Chart (MSC). ITU, 1996.
[12] CHANDY, K.M., MISRA, J. Parallel program design, a foundation. Addison-

Wesley, 1988.
[13] LAMPORT, L. The temporal logic of actions. ACM TOPLAS, 16:872-

923,1994.
[14] STØLEN, K., KARLSEN, T.W., MOHN, P., SANDMARK, H. Using CASE-

tools based on formal methods in real-life system developments of distributed
systems. HWR-522, OECD Halden Reactor Project, 1998.



[15] STØLEN, K. Formal specification of open distributed systems --- overview and
evaluation of existing methods. HWR-523, OECD Halden Reactor Project,
1998.

[16] ZHANG, W. Verification techniques and tools for formal software develop-
ment. HWR-526, OECD Halden Reactor Project, 1998.

[17] BYE, A., BRENDEFORD, T.S., HOLLNAGEL, E., HOFFMANN, M.,
MOHN, P. Human-machine function allocation by functional modelling -
FAME - a framework for systems design. HWR-513, OECD Halden Reactor
Project, 1998.

[18] Software Quality Assurance Manual, Version 1.0 - 1/6/95. IFE, 1995.
[19] MOHN, P., SANDMARK, H., STØLEN, K. Experiences from the development

of the FAME communication manager using the CASE-tool SDT. To appear as
HWR, OECD Halden Reactor Project, 1999.

[20] BOEHM, B.W. A spiral model of software development and enhancement.
IEEE Computer, 21:61-72, 1988.

[21] MILNER, R. An algebraic definition of simulation between programs. In Proc.
2nd International joint conference on artificial intelligence, 1971.

[22] HOARE, C.A.R. Proof of correctness of data representations. Acta Informatica,
1:271-282, 1972.

[23] JONES, C.B. Formal development of correct algorithms: an example based on
Earley’s recogniser. In Proc. ACM conferences on proving assertions about
programs, SIGPLAN Notices, 7:150-169, 1972.

[24] ABADI, M., LAMPORT, L. Conjoining specifications. ACM TOPLAS,
17:507-533, 1995.

[25] BROY, M., STØLEN, K. Focus on system development. Book manuscript,
May 1998.

[26] BROY, M. Towards a formal foundation of the specification and description
language SDL. Formal Aspects of Computing, 3:21-57, 1991.

[27] HOLZ, E., STØLEN, K. An attempt to embed a restricted version of SDL as a
target language in Focus. In Proc. Forte94, pages 324-339, Chapman & Hall,
1994.

[28] HAUGEN, Ø. Practitioners’ verification of SDL systems. Dr. Scient thesis,
University of Oslo, April, 1997.

[29] TICHY, W.F. Should computer scientists experiment more? IEEE Computer
31:32-40, 1998.

[30] TICHY, W.F., LUKOWICS, P., PRECHELT, L., HEINZ, E. A. Experimental
evaluation in computer science: a quantitative study. Journal of Systems and
Software 28:9-18, 1995.

[31] ZELKOWITZ, M.V., WALLACE, D.R. Experimental models for validating
technology. IEEE Computer 31: 23-31, 1998.


