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Abstract. Nondeterminism in specifications may be used for at least two
different purposes. One is to express underspecification, which means that
the specifier for the same environment behavior allows several alterna-
tive behaviors of the specified component and leaves the choice between
these to those responsible for implementing the specification. In this case
a valid implementation will need to implement at least one, but not nec-
essarily all, alternatives. The other purpose is to express inherent nonde-
terminism, which means that a valid implementation needs to reflect all
alternatives. STAIRS is an approach to the compositional and incremental
development of sequence diagrams supporting underspecification as well
as inherent nondeterminism. Probabilistic STAIRS builds on STAIRS and
allows probabilities to be included in the specifications. Underspecifica-
tion with respect to probabilities is also allowed. This paper investigates
the use of underspecification, inherent nondeterminism and probability
in sequence diagrams, the relationships between these concepts, and how
these are expressed in STAIRS and probabilistic STAIRS.

1 Introduction

Nondeterminism in specifications may be used for expressing underspecification
as well as inherent nondeterminism. Underspecification means that the specifier
leaves some freedom of choice to those who will implement or further refine the
specification. This is useful when different design alternatives fulfill a function
equally well from the specifier’s point of view. For example, when specifying an
automatic teller machine we need to ensure that money is delivered and the
card is returned at the end of the transaction. But whether the card is returned
before or after the money is not important, and we may leave the choice to those
responsible for making the teller machine.

Inherent nondeterminism, on the other hand, means that all alternatives must
be reflected also in the final implementation. For example, when specifying a pro-
gram to simulate a coin flip it is essential that both heads and tails are possible
outcomes. An inherently nondeterministic choice can be seen as an abstraction
of a probabilistic choice where the probabilities are greater than 0 but otherwise
unknown.

The difference between underspecification and inherent nondeterminism is
related to refinement. In an implementation, which is not supposed to be refined
and has no underspecification, the distinction is not relevant.
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STAIRS ([HHRS05b],[RHS05c]) is a method for the compositional devel-
opment of interactions, such as sequence diagrams and interaction overview
diagrams. STAIRS employs two different choice operators to distinguish be-
tween underspecification and inherent nondeterminism; alt represents under-
specification and xalt represents inherent nondeterminism. Probabilistic STAIRS
([RHS05a]) replaces xalt with the palt operator that also allows specification of
probabilities on its operands.

STAIRS includes all the main composition operators of UML 2.0 interactions,
such as seq and par for specifying sequential and parallel composition respec-
tively. As these operators are not important for the discussion in this paper, we
refer to [HHRS05b] for formal definitions and examples using these operators.

This paper summarizes insights gained during our work with formalization of
various forms of nondeterminism in STAIRS and probabilistic STAIRS by inves-
tigating the different roles of nondeterminism in interactions. In particular we

– demonstrate the usefulness of underspecification, inherent nondeterminism
and probability in specifications,

– show that these concepts are adequately expressed in STAIRS and proba-
bilistic STAIRS by the operators alt, xalt and palt,

– explore the properties of these operators, in particular with respect to re-
finement,

– provide simple examples that give a thorough understanding of the use of
these operators, both separately and combined.

The paper is organized as follows: Section 2 discusses underspecification and
its representation in a simplified version of STAIRS. In Section 3 we motivate
the need for inherent nondeterminism and show how this is incorporated in full
STAIRS. Section 4 introduces probabilistic STAIRS. We discuss related work in
Section 5 before concluding in Section 6.

2 Underspecification

2.1 Motivation

Often, it is useful to write specifications where certain aspects of the behavior
of the system are left open. This is known as underspecification. In many cases,
underspecification will be an implicit consequence of using abstraction when
describing the important features of a system. Many specification languages also
include some kind of ’or’ operator for explicitly specifying the alternatives the
implementer may choose between. In STAIRS, this is the alt operator.

In our setting of interactions, the alt operator may be used to describe sce-
narios that are different, but still seen as alternative means to achieve the same
purpose in some sense. The alt operator is also called potential choice, as the
alternatives represent choices that the implementation may choose between in
order to satisfy the specification. As an everyday example, consider the action
of making a u-turn when walking. This may be achieved by turning either
180 degrees left or 180 degrees right. Which alternative you choose is usually
insignificant.
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2.2 Semantic Representation

In STAIRS the semantics of an interaction is defined by denotational trace se-
mantics, where a trace is a sequence of events representing a system run. We
denote the semantics of an interaction d by [[ d ]]. For the subset of STAIRS pre-
sented so far, containing only underspecification (and not inherent nondetermin-
ism) the semantics of an interaction is represented by an interaction obligation
(p,n). Here, p is a set of positive traces, representing desired or acceptable be-
havior, while n is a set of negative traces, representing undesired or unacceptable
behavior.

An interaction is a partial specification in the sense that it does not in general
define all the behavior of the system. Traces that are neither positive nor negative
are called inconclusive, meaning that these are traces that the specifier has not
yet considered. Letting H denote the universe of all traces, the traces H\ (p ∪n)
are inconclusive in the obligation (p,n).

From an implementation point of view, there is no distinction between in-
conclusive and positive traces, as they all represent possible behaviors of the
system. However, conceptually there is an important difference between behav-
iors that are explicitly described and behaviors that are not. Also, positive and
inconclusive traces are treated differently by composition operators such as seq
(sequential composition) and par (parallel composition), see [HHRS05b].

Underspecification by means of alt corresponds to taking the pairwise union
of the positive and negative trace-sets of the operands. Formally:

[[ d1 alt d2 ]] def= [[ d1 ]] � [[ d2 ]] (1)

where
(p1,n1) � (p2,n2)

def= (p1 ∪ p2,n1 ∪ n2) (2)

From this definition it is clear that the alt operator can be used not only
to introduce underspecification in the form of alternative ways of fulfilling a
task (i.e. new positive traces), but also to introduce more restrictions by adding
new negative traces. By taking the union also of the negative traces, the alt
operator can be used to merge alternatives that are considered to be similar,
both at the positive and the negative level. In addition, the above definition
ensures monotonicity of refinement with respect to alt, which will be clear from
the following sections.

2.3 Refinement

Refinement of a specification means to reduce underspecification by adding in-
formation so that the specification becomes closer to an implementation. As
in [HHRS05b], we distinguish between two special cases of refinement, called
narrowing and supplementing. Narrowing reduces the set of positive traces to
capture new design decisions or to match the problem more accurately. Sup-
plementing categorizes (to this point) inconclusive behavior as either positive
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or negative. Formally, an interaction obligation (p′,n ′) is a refinement of an
interaction obligation (p,n), written (p,n) � (p′,n ′), iff

n ⊆ n ′ ∧ p ⊆ p′ ∪ n ′ (3)

Intuitively, supplementing means that it is possible to add new positive or nega-
tive traces to those already specified. Specifying more alternative traces is usually
achieved by using the alt operator, meaning that we want d1 alt d2 to be a valid
refinement of d1 (and of d2). As negative traces must remain negative in a re-
finement, this means that d1 alt d2 must include the negative traces of both d1
and of d2, as in equation 2 above.

2.4 Simple Example

We now give a simple example of underspecification and refinement. Figure 1
specifies the game of tic-tac-toe between a player and the system. Either the
player or the system may make the first move, and this is specified using alt.
The player and the system then alternate making moves until the game is over.
The opt operator is a shorthand for an alt with an empty second operand, while
loop(2,3) may be interpreted as an alt between performing the contents of the
loop two and three times. For formal definitions of opt and loop, see [RHS05c].
The game is finished after minimum five and maximum eight moves, depending
on how many times the loop is executed, and whether the move inside opt is
performed or not. (A ninth move is never really necessary, as the result of the
game will be given at latest after the eight move.) We have omitted the details
describing the exact positions taken in each move.

player system

sd playerFirstsd TicTacToe

ref playerFirst

alt

ref systemFirst

X

O

loop(2,3)

X

O
opt

player system

sd systemFirst

O

X

loop(2,3)

O

X
opt

Fig. 1. Playing tic-tac-toe

In TicTacToe, the choice of who gets the first move is an example of under-
specification. A possible refinement could be to use narrowing in order to remove
this underspecification, as in TicTacToe2 where the player always moves first:
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TicTacToe2 = (playerFirst) alt (refuse systemFirst)

where the operator refuse intuitively means that all traces defined by its argu-
ment should be considered negative. (For a formal definition of refuse, se Sec-
tion 3.2.) A further refinement could be to add behavior to the specification
by e.g. defining that traces where the system makes a second move before the
player gets to do his/her move, are negative. These behaviors were inconclusive
in TicTacToe2 (and TicTacToe), making this an example of supplementing.

2.5 Properties of alt and Refinement

As can be expected, the operator alt is

– associative: d1 alt (d2 alt d3) = (d1 alt d2) alt d3
– commutative: d1 alt d2 = d2 alt d1

This follows trivially from the associativity and commutativity of ∪.
As proved in [HHRS05a], we also have that the refinement operator � is

– reflexive: (p,n) � (p,n)
– transitive: (p,n) � (p′,n ′) ∧ (p′,n ′) � (p′′,n ′′) ⇒ (p,n) � (p′′,n ′′)
– monotonic with respect to alt:

[[ d1 ]] � [[ d ′
1 ]] ∧ [[ d2 ]] � [[ d ′

2 ]] ⇒ [[ d1 alt d2 ]] � [[ d ′
1 alt d ′

2 ]]

3 Inherent Nondeterminism

3.1 Motivation

Underspecification gives rise to nondeterminism, as the system behavior is not
completely determined by the specification. Still, nondeterminism in the sense
of underspecification does not require that the implementation itself should be
nondeterministic. Sometimes, however, it is desirable to specify nondeterminism
that must be present also in the implementation. We call this inherent nonde-
terminism. The throwing of a dice is an example of a process we would specify
as inherently nondeterministic. Another example is a password generator, that
should select passwords nondeterministically, at least from the perspective of the
user (and the attacker). Inherent nondeterminism is in fact also essential in the
domain of (information) security, see [Ros95].

As inherent nondeterminism and underspecification impose different require-
ments on an implementation, they should be described differently both in the
syntax and the semantics of interactions. In STAIRS, inherent nondeterminism
is specified by the use of the operator xalt. The xalt operator is also called manda-
tory choice, as the implementation must be able to perform (i.e. choose) any one
of the given alternatives.

3.2 Semantic Representation

In Section 2.2 we represented the semantics of a STAIRS specification with
underspecification as an interaction obligation (p,n). With this simple semantics,



Underspecification, Inherent Nondeterminism and Probability 143

it is not possible to express cases where all alternatives need to be present in an
implementation, as traces could be moved from positive to negative by means of
refinement. For STAIRS specifications with both underspecification and inherent
nondeterminism, we therefore extend the semantics to be a set of interaction
obligations. The interpretation is that for each interaction obligation (pi ,ni) a
valid implementation needs to be able to produce at least one trace allowed
by (pi ,ni). Intuitively, each interaction obligation (pi ,ni) defines an inherently
nondeterministic alternative that needs to be implemented, but exactly how this
should be achieved is underspecified, since H \ ni is a set. This leads us to the
following formal definition of xalt:

[[ d1 xalt d2 ]] def= [[ d1 ]] ∪ [[ d2 ]] (4)

We now define the operator refuse, informally explained in Section 2.4, and gen-
eralize the definition of alt to cover operands with several interaction obligations:

[[ refuse d ]] def= {(∅, p ∪ n) | (p,n) ∈ [[ d ]]} (5)

[[ d1 alt d2 ]] def= {(p1 ∪ p2,n1 ∪ n2) | (p1,n1) ∈ [[ d1 ]] ∧ (p2,n2) ∈ [[ d2 ]]} (6)

3.3 Refinement Revisited

The whole point of inherent nondeterminism in a specification is to ensure that
the alternatives are preserved during refinement. Since each interaction obliga-
tion represents an inherently nondeterministic alternative, we need to ensure
that each interaction obligation from the abstract specification will be repre-
sented also in the more concrete specification. Formally, a specification d ′ is a
refinement of a specification d , written d � d ′, iff

∀ o ∈ [[ d ]] : ∃ o′ ∈ [[ d ′ ]] : o � o′ (7)

where o � o′ is refinement of interaction obligations as given by definition 3.

3.4 Simple Example

As an example, we consider a so-called ’randomizer’ that should provide non-
deterministic output selected randomly. Figure 2 gives a specification where the
randomizer simulates the flipping of a coin, where both heads and tails should
be possible outcomes.

Textually, we may write the Coin specification and its semantics as:

Coin = (heads alt (refuse tails)) xalt (tails alt (refuse heads))

[[ Coin ]] = { ({h}, {t}), ({t}, {h}) }

where h denotes the trace(s) where the outcome is heads and t denotes the
trace(s) where the outcome is tails. This semantics is illustrated in the bottom
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receiver randomizer

sd Heads

heads

tails
refuse

alt

sd Coin

ref Tailsref Heads

xalt

receiver randomizer

sd Tails

tails

heads
refuse

alt

h
t

t
h

Fig. 2. The coin specification. Semantic representation to the bottom right.

right of Figure 2, where each circle represents an interaction obligation with the
positive traces in the upper half and the negative traces in the lower half.

As another example, we specify how throwing a dice may simulate the flipping
of a coin. One way of doing this is to let odd numbers represent heads, and even
numbers represent tails. This is expressed by the specification

DiceCoin = Throw135 xalt Throw246

where Throw135 specifies a throw resulting in an odd number and Throw246
specifies a throw resulting in an even number:

Throw135 = (1 alt 3 alt 5) alt (refuse (2 alt 4 alt 6))
Throw246 = (2 alt 4 alt 6) alt (refuse (1 alt 3 alt 5))

Using the given definitions of alt and xalt, we thereby get:

[[ DiceCoin ]] = { ({1, 3, 5}, {2, 4, 6}), ({2, 4, 6}, {1, 3, 5}) }

As should be expected, this semantics tells us that when using a dice to
simulate a coin, the dice should at least be able to produce one of the numbers
1, 3 and 5 (representing heads) and one of the numbers 2, 4 and 6. However,
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it is not significant that all numbers may be produced, and DiceCoin may be
implemented by the unfair dice DiceCoin2 giving only the numbers 1 and 6:

[[ DiceCoin2 ]] = { ({1}, {2, 3, 4, 5, 6}), ({6}, {1, 2, 3, 4, 5}) }

We see that DiceCoin2 is a valid refinement of DiceCoin, as each obligation of
DiceCoin is refined into an obligation of DiceCoin2 where some of the positive
behaviors have been redefined as negative (i.e. narrowed).

3.5 Relating xalt to alt

It is interesting to investigate what kinds of specifications we get by combin-
ing the operators for underspecification (i.e. alt) and inherent nondeterminism
(i.e. xalt). We have already seen examples of alt within xalt in DiceCoin and Dice-
Coin2 in the previous section. It remains to investigate the use of xalt within one
or both of the operands of alt.

A possible refinement of the Coin specification in Figure 2, is to strengthen the
specification by stating that the coin should never land on the side. As landing
on the side is negative both in the heads and the tails alternative, this behavior
may be added by using alt as the top-level operator as in Coin2:

Coin2 = Coin alt (refuse side)

[[ Coin2 ]] = { ({h}, {t , s}), ({t}, {h, s}) }

where s denotes the trace(s) where the coin lands on the side. As the example
demonstrates, alt may in general be used to add (i.e. supplement) the same
positive and/or negative traces to all interaction obligations specified by xalt.

It remains to consider the case where we have xalt in both operands of alt.
Consider again the flipping of a coin as given in Figure 2. Another specification
where the randomizer simulates the rolling of a three-sided dice is given by:

Dice = (1 alt (refuse (2 alt 3))) xalt (2 alt (refuse (1 alt 3))) xalt

(3 alt (refuse (1 alt 2)))

In Figure 3 the specifications Coin and Dice are merged by the alt operator.
Observe that Coin/Dice is a refinement of both the Coin and the Dice specifica-
tions. Each interaction obligation defined by Coin has three refined obligations
in Coin/Dice (one would have been sufficient), as the earlier inconclusive traces
related to Dice have been supplemented as positive or negative. Similarly, each
of the three interaction obligations defined by Dice is refined by two interac-
tion obligations in Coin/Dice. In this sense we may say that the specification of
Coin/Dice represents both the Coin and the Dice specifications.

On the other hand, neither Coin nor Dice are valid refinements of Coin/Dice,
since the traces 1, 2, 3 are inconclusive in the interaction obligations of Coin and
the traces h and t are inconclusive in the interaction obligations of Dice. How-
ever, the specifications (Coin alt (refuse Dice)) and ((refuse Coin) alt Dice) are
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sd Coin/Dice

ref Diceref Coin

alt

1,h
2,3,t

1,t
2,3,h

2,h
1,3,t

2,t
1,3,h

3,h
1,2,t

3,t
1,2,h

Fig. 3. The Coin and Dice specifications combined by alt. Semantic representation to
the right.

both valid refinements of Coin/Dice, since these specifications ensure that none
of the traces from the Coin/Dice specification are inconclusive. Intuitively, these
specifications mean that traces from the Dice (or Coin) alternative should not
be produced, which means that the opposite alternative is chosen. In general,
for any specifications d1 and d2 the set of valid refinements (and therefore im-
plementations) of d1 alt d2 will be both a subset of the valid refinements of d1
and a subset of the valid refinements of d2.

A valid refinement of the specification in Figure 3 would be to move the trace
h to the negative sets in all interaction obligations, without doing the same with
the trace t . The possible outcomes of a single run would then be 1, 2, 3 or t –
so we know that if a coin trace is produced, it will be t (assuming 1, 2, 3, h and
t are the only relevant traces).

The alt operator should be interpreted as underspecification w.r.t. traces and
not w.r.t. interaction obligations. As demonstrated by the examples in this sec-
tion it is not sufficient for an implementation to consider only one of the alt
operands. In general, the alt characterizes the intersection of its operands, mean-
ing that d1 alt d2 is a refinement of both d1 and d2. If we restrict refinement to
narrowing, using alt between two specifications with xalt may be interpreted as
’the implementation must include the inherent nondeterminism specified by at
least one of the alternatives’.

3.6 Properties of xalt and Refinement

As for alt, xalt is

– associative: d1 xalt (d2 xalt d3) = (d1 xalt d2) xalt d3
– commutative: d1 xalt d2 = d2 xalt d1

This follows trivially from the associativity and commutativity of ∪.
With respect to xalt, alt is

– right distributive: (d1 xalt d2) alt d3 = (d1 alt d3) xalt (d2 alt d3)
– left distributive: d1 alt (d2 xalt d3) = (d1 alt d2) xalt (d1 alt d3)

meaning that a specification with arbitrary nesting of alt and xalt may always
be rewritten as a specification with xalt as the top-level operator. This is proved
in [RRS06].
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As in the simple case, we have that the refinement operator � is:

– reflexive: d � d
– transitive: d � d ′ ∧ d ′ � d ′′ ⇒ d � d ′′

– monotonic with respect to alt and xalt:
d1 � d ′

1 ∧ d2 � d ′
2 ⇒ d1 alt d2 � d ′

1 alt d ′
2 ∧ d1 xalt d2 � d ′

1 xalt d ′
2

These results are proved in [HHRS05a].

4 Probability

4.1 Motivation

Being able to specify probabilities add useful expressiveness to the specifications.
One typical example is in the specification of a coin or a dice, where the alter-
natives must occur with the same probability. Another example is a gambling
machine, where the winning alternatives should occur, but less often than the
losing ones.

Interactions are mainly used for specifying communication scenarios. Proba-
bilities are equally relevant in this setting, for instance to specify the probability
that a message will never be received when sent over an unreliable communica-
tion channel. Another example is when specifying soft real-time constraints such
as ’the user of the system will receive an answer within 10 seconds at least 90% of
the time’ (for more details, see [RHS05a]). As this example demonstrates, we are
not only interested in assigning exact probabilities to all alternatives specified
by an xalt, but also to specify a possible range for the probabilities, i.e. to allow
underspecification with respect to probabilities as well as behaviors. In STAIRS,
this is achieved by generalizing xalt to the palt operator.

4.2 Semantic Representation

Semantically, a probabilistic STAIRS specification is represented by a set of prob-
ability obligations (also called p-obligations). A p-obligation ((p,n),Q) consists
of an interaction obligation (p,n) and a set of probabilities Q . In any valid im-
plementation the p-obligation ((p,n),Q) should be selected with a probability
in Q . The fact that Q is a set and not a single probability allows us to represent
underspecification w.r.t. probabilities.

If a specification includes the p-obligation (({t1, t2}, H \ {t1, t2}), {0.6}), this
does not necessarily mean that the probability of getting either t1 or t2 is 0.6; it
may be greater if there is another p-obligation ((p,n),Q) such that {t1, t2} � n.
On the other hand, if a specification contains a p-obligation ((p,n), {0.6}) such
that {t3, t4} ⊆ n, then we know that the probability of getting a trace in {t3, t4}
is at most 0.4.

The palt construct expresses probabilistic choice. Use of the palt operator is the
only way to assign probabilities different from 1. Before defining the semantics
of the palt, we introduce the notion of probability decoration, used to specify
the probabilities associated with the operands of a palt. It is defined by
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[[ d ;Q ′ ]] def= {(o,Q ∗ Q ′) | (o,Q) ∈ [[ d ]]} (8)

where multiplication of probability sets is defined by

Q1 ∗ Q2
def= {q1 ∗ q2 | q1 ∈ Q1 ∧ q2 ∈ Q2} (9)

We also define the summation of n probability sets:

n∑

i=1

Qi
def= {min(

n∑

i=1

qi , 1) | ∀ i ≤ n : qi ∈ Qi} (10)

The palt operator describes the probabilistic choice between two or more
alternative operands whose joint probability should add up to one. Formally,
the palt is defined by

[[ palt(d1;Q1, . . . , dn ;Qn) ]] def= (11)

{(⊕
⋃

i∈N

{poi},
∑

i∈N

π2.poi ) |

N ⊆ {1, . . . ,n} ∧ N = ∅ ∧ ∀ i ∈ N : poi ∈ [[ di ;Qi ]]} (a)

∪ {(⊕
n⋃

i=1

[[ di ;Qi ]], {1} ∩
n∑

i=1

Qi)} (b)

where π2.po returns the probability set of the p-obligation po and ⊕ is an oper-
ator for combining the interaction obligations of a set S of p-obligations into a
single interaction obligation, defined as

⊕S def= ((
⋃

((p,n),Q)∈S

p) ∩ (
⋂

((p,n),Q)∈S

p ∪ n),
⋂

((p,n),Q)∈S

n) (12)

We now explain definition 11 in detail. We first look at 11a. If we restricted
each N to be a singleton set then this part of the definition could be written
equivalently as

⋃n
i=1[[ di ;Qi ]]. This would correspond to the definition of xalt and

means simply that each probabilistic alternative should be reflected in a valid
implementation.

By including also the cases where N is any non-empty subset of {1, . . . ,n} we
are able to define the semantics as a set of p-obligations instead of as a multiset.
The operator ⊕ characterizes the traces allowed by all the p-obligations in its
argument set: A trace t is positive if it is positive according to at least one
p-obligation and not inconclusive according to any; t is negative only if it is
negative according to all p-obligations; traces that are inconclusive according
to at least one p-obligation remain inconclusive. So if a p-obligation ((p,n),Q)
occurs for example in two operands of the palt, then the resulting semantics will
contain a p-obligation ((p,n),Q + Q).

The single p-obligation in 11b requires the probabilities of the operands to
add up to one. If it is impossible to choose one probability from each Qi so that
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the sum is 1, then the probability set will be empty and the specification is not
implementable.

We also redefine the refuse and alt operators to take probabilities into account.
Redefining positive traces as negative does not influence probabilities, so refuse
is defined simply by

[[ refuse d ]] def= {((∅, p ∪ n),Q) | ((p,n),Q) ∈ [[ d ]]} (13)

The alt construct captures underspecification with respect to traces. Two sets
of p-obligations are combined by taking the pairwise combination of p-obligations
from each set. As before, interaction obligations are combined by taking the
union of the positive traces and the union of the negative traces. In Section
3.5 we showed that the resulting interaction obligation is a refinement of both
the original ones, and therefore represents both of these interaction obligations.
Since the two p-obligations from the different operands are chosen independently
from each other, probabilities are multiplied. Formally:

[[ d1 alt d2 ]] def= {(o1 � o2,Q1 ∗ Q2) | (o1,Q1) ∈ [[ d1 ]] ∧ (o2,Q2) ∈ [[ d2 ]]} (14)

4.3 Refinement Revisited

A p-obligation is refined by either refining its interaction obligation, or by reduc-
ing its set of probabilities. Formally, a p-obligation ((p′,n ′),Q ′) is a refinement
of a p-obligation ((p,n),Q), written ((p,n),Q) � ((p′,n ′),Q ′), iff

(p,n) � (p′,n ′) ∧ Q ′ ⊆ Q (15)

All abstract p-obligations must be represented by a p-obligation also at the
refined level, unless it has 0 as an acceptable probability, which means that it
does not need to be implemented. Formally, a specification d ′ is a refinement of
a specification d , written d � d ′, iff

∀ po ∈ [[ d ]] : (0 ∈ π2.po ⇒ ∃ po′ ∈ [[ d ′ ]] : po � po′) (16)

We now explain further why also the cases where N is any non-singular subset
of {1, . . . ,n} is included in definition 11a. Firstly, we want to avoid a situation
where two p-obligations (o1,Q1) and (o2,Q2) coming from different operands of
a palt are represented only by a single p-obligation (o,Q) that is a refinement
of both (o1,Q1) and (o2,Q2) at the concrete level. We avoid this since also the
p-obligation (⊕{(o1,Q1), (o2,Q2)},Q1 + Q2) is included in the semantics and
hence needs to be represented at the concrete level.

Secondly, it should be possible to let a single p-obligation at the abstract level
be represented by a combination of p-obligations at the concrete level, as long
as each of these p-obligations are valid refinements of the original p-obligation
w.r.t. interaction obligations and their probability sets add up to a subset of the
original probability set. The inclusion of the combined p-obligations (resulting
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from N sets with more than one element) in the palt semantics makes this
possible.

Our definition of refinement also explains why we have chosen to assign sets of
acceptable probabilities to the operands, and not simply lower bounds. Consider
the following specifications:

da = palt(d1;[15 . . . 1], d2;[15 . . . 1], d3;[15 . . . 1])
db = palt(d1;[15 . . . 1

2 ], d2;[15 . . . 1
2 ], d3;[15 . . . 1

2 ])
dc = palt(d1;{ 1

5}, d2;{ 1
5}, d3;{ 3

5})

Then dc is a refinement of da , but not of db . So by using only lower bounds we
would have less expressive power.

4.4 Simple Example

We now demonstrate a simple refinement in probabilistic STAIRS, building on
the DiceCoin/DiceCoin2 example from Section 3.4. Let pDiceCoin be a proba-
bilistic version of DiceCoin where the probabilities of odd and even numbers are
the same, represented syntactically and semantically by

pDiceCoin = palt(Throw135;{ 1
2}, Throw246;{ 1

2})

[[ pDiceCoin ]] = { (({1, 3, 5}, {2, 4, 6}), { 1
2}), (({2, 4, 6}, {1, 3, 5}), { 1

2}),

(({1, 2, 3, 4, 5, 6}, ∅), {1}) }

The semantic representation tells us that the dice should be able to produce at
least one number in {1,3,5}, and the probability for this alternative should be 1

2 .
Similarly, the dice should be able to produce at least one number in {2,4,6}, with
probability 1

2 . Obviously, the probability of producing a number in {1,2,3,4,5,6}
should then be 1.

Suppose now that we require that the dice should be fair w.r.t. the odd num-
bers, give equal chances of odd and even number, and not produce any even num-
ber different from 6. We first let [[ Throw1 ]] = { (({1}, {2, 3, 4, 5, 6}), {1}) } and
similarly for the other numbers. We then refine Throw135 by Throw135Fairly:

Throw135Fairly = palt(Throw1;{ 1
3}, Throw3;{ 1

3}, Throw5;{ 1
3})

[[ Throw135Fairly ]] = { (({1}, {2, 3, 4, 5, 6}), { 1
3}) ,

(({3}, {1, 2, 4, 5, 6}), { 1
3}) , (({5}, {1, 2, 3, 4, 6}), { 1

3}) ,

(({1, 3}, {2, 4, 5, 6}), { 2
3}) , (({1, 5}, {2, 3, 4, 6}), { 2

3}) ,

(({3, 5}, {1, 2, 4, 6}), { 2
3}) , (({1, 3, 5}, {2, 4, 6}), {1}) }

As Throw135 has the semantics {(({1, 3, 5}, {2, 4, 6}), {1})}, we see that this is
indeed a valid refinement, since the only p-obligation in [[ Throw135 ]] is identical
to one of the p-obligations in [[ Throw135Fairly ]]. A dice that is fair w.r.t. the
odd numbers, has equal chances of odd and even numbers, and does not produce
any even number different from 6 can now be expressed by
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pDiceCoin2 = palt(Throw135Fairly;{ 1
2}, Throw6;{ 1

2})
[[ pDiceCoin2 ]] = { (({1}, {2, 3, 4, 5, 6}), { 1

6}) ,

(({3}, {1, 2, 4, 5, 6}), { 1
6}) , (({5}, {1, 2, 3, 4, 6}), { 1

6}) ,

(({1, 3}, {2, 4, 5, 6}), { 1
3}) , (({1, 5}, {2, 3, 4, 6}), { 1

3}) ,

(({3, 5}, {1, 2, 4, 6}), { 1
3}) , (({1, 6}, {2, 3, 4, 5}), { 2

3}) ,

(({3, 6}, {1, 2, 4, 5}), { 2
3}) , (({5, 6}, {1, 2, 3, 4}), { 2

3}) ,

(({1, 3, 6}, {2, 4, 5}), { 5
6}) , (({1, 5, 6}, {2, 3, 4}), { 5

6}) ,

(({3, 5, 6}, {1, 2, 4}), { 5
6}) , (({1, 3, 5}, {2, 4, 6}), { 1

2}) ,

(({6}, {1, 2, 3, 4, 5}), { 1
2}) , (({1, 3, 5, 6}, {2, 4}), {1}) }

Each p-obligation in [[ pDiceCoin ]] has a refining p-obligation in [[ pDiceCoin2 ]],
so pDiceCoin � pDiceCoin2 holds.

4.5 Relating palt to xalt and alt

In STAIRS, every xalt-operand represents an alternative that must be reflected
in the implementation. Its probability should be greater than 0, but is otherwise
unknown. In probabilistic STAIRS, a specification xalt(d1, . . . , dn) is therefore
interpreted as palt(d1;Q , . . . , dn ;Q) where Q = 〈0, . . . , 1].

We now discuss what it means to have probabilistic STAIRS specifications
that combine the use of the alt and palt operators. We hope the meaning of
underspecification within probabilistic alternative is intuitively clear, and do
not go further into this. Instead we show a probabilistic version of the previous
examples. pCoin specifies a coin, while pDice specifies a 3-sided dice:

pCoin = palt(Heads;{ 1
2}, Tails;{ 1

2})

pDice = palt(One;{ 1
3}, Two;{ 1

3}, Three;{ 1
3})

[[ pCoin ]] = {(({h}, {t}), { 1
2}), (({t}, {h}), { 1

2}), (({h, t}, ∅), {1})}
[[ pDice ]] = {(({1}, {2, 3}), { 1

3}), (({2}, {1, 3}), { 1
3}), (({3}, {1, 2}), { 1

3}),

(({1, 2}, {3}), { 2
3}), (({1, 3}, {2}), { 2

3}), (({2, 3}, {1}), { 2
3}),

(({1, 2, 3}, ∅), {1})}

These examples use only a single probability in each probability set (there is no
underspecification w.r.t. probabilities). Figure 4 shows the semantics of

pCoin/Dice = pCoin alt pDice

We see that the interaction obligation of each p-obligation in pCoin/Dice
refines the interaction obligation of a p-obligation for both pCoin and pDice.
For example, the interaction obligation of the leftmost, uppermost p-obligation
in Figure 4 represent the first p-obligation of both [[ pCoin ]] and [[ pDice ]].
Since these represent two independent probabilistic choices it is reasonable to
multiply their probabilities. This also gives the nice result that if we consider
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Fig. 4. The semantics of (pCoin alt pDice) in probabilistic STAIRS

only ’pure’ p-obligations (those we get from definition 11a in the cases where N
is a singleton set), then their probabilities add up to 1. In Figure 4 these ’pure’
p-obligations are enclosed by the dotted line.

4.6 Properties of alt, palt and Refinement

For alt, the revised definition 14 is still associative and commutative.
In contrast to xalt, palt is not associative. The order in which obligations are

combined according to 11b is significant, since this determines which probabil-
ities must add up to 1. Remember that the requirement that probabilities for
the operands add up to 1 applies to each occurrence of a palt operator, inde-
pendently of the nesting level. For similar reasons, alt is not distributive with
respect to palt. Consider the following specifications:

da = (palt(d1;Q1, d2;Q2)) alt (palt(d3;Q3, d4;Q4))
db = palt((palt(d1;Q1, d2;Q2) alt d3);Q3, (palt(d1;Q1, d2;Q2) alt d4);Q4)

In db we are free to choose different probabilities from the sets Q1 and Q2 in the
two operands of the outermost palt. In da there is no such freedom, so in this
respect da is more restrictive than db .

However, we do have commutativity of palt:

∀ i , j ∈ [1,n] : palt(. . . , di ;Qi , . . . , dj ;Qj , . . .) = palt(. . . , dj ;Qj , . . . , di ;Qi , . . .)

This follows trivially from the commutativity of ∪.
For probabilistic STAIRS, the refinement operator � is:

– reflexive, transitive, and monotonic with respect to alt
– restricted monotonic with respect to palt:

(∀ i ∈ [1 : n] : di � d ′
i ∧ Q ′

i ⊆ Qi ∧ ⊕[[ di ]] � ⊕[[ d ′
i ]]) ⇒

palt(d1;Q1, . . . , dn ;Qn) � palt(d ′
1;Q

′
1, . . . , d

′
n ;Q ′

n)
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This is proved in [RHS05b], which also motivates the last requirement in the
monotonicity for palt.

The interpretation given for xalt in probabilistic STAIRS is reasonable, as
xalt(d1, . . . , dn) and palt(d1;〈0 . . . 1], . . . dn ;〈0 . . . 1]) are refinements of each other
when abstracting away the probabilities. This is proved in [RRS06].

5 Related Work

Most specification languages do not distinguish between underspecification and
inherent nondeterminism the way it is done in STAIRS. The most well known
dialects of interactions are UML [OMG04] and MSC [ITU99]. Neither of these
have two different operators corresponding to alt and xalt. In practice, the alt
operator of UML is probably used by different groups to describe both inherent
nondeterminism and underspecification.

Live Sequence Charts [DH01] and [HM03] is a dialect of MSC where a (part)
of an interaction may be designated as either universal (mandatory) or existen-
tial (optional). Explicit criteria in the form of precharts decide when the chart
applies; whenever the communication behavior described by the prechart occurs,
behavior described by the chart must follow (in the case of universal locations)
or may follow (in the case of existential locations). Universal charts specify all
allowed traces. This is therefore not the same as inherently nondeterministic
alternatives in STAIRS, since the latter only specifies some of the traces that
must be present in an implementation.

CSP [Hoa85] defines two different operators for nondeterministic choice. Their
difference, however, is explained in terms of internal versus external choice. This
is not the same distinction as the one between underspecification and inherent
nondeterminism. As an example, let ? denote an input event, ! denote an out-
put event, and seq be the operator for sequential composition in the STAIRS
specification (?a seq (!b xalt !c)) alt ((?b seq !d)). Here, the environment may
choose between the two alt-operands, corresponding to external choice in CSP.
However, the choice between !b and !c should be inherently nondeterministic, a
requirement that may not be expressed using the CSP operators, while replacing
xalt with alt, would correspond to internal choice in CSP.

[SBDB97] extends the process algebraic language LOTOS [ISO89] with a
disjunction operator for specifying implementation freedom (i.e. underspecifi-
cation), leaving the LOTOS choice operator to be used for inherent nondeter-
minism. The disjunction operator is similar to our alt operator, and the choice
operator corresponds to xalt. An important difference between disjunction and
alt is that an implementation will have to select exactly one of the disjunction
operands, while it may include several of the traces specified by alt.

Probabilistic automata [Seg95] includes both nondeterminism and probabilistic
choice.Underspecification with respect to probabilities is representedby nondeter-
ministic choices between distributions. As for automata in general, specifications
are complete in the sense that there is no notion of inconclusive behavior.

In [MM99] a probabilistic extension of Dijkstra’s Guarded Command Lan-
guage GCL [Dij76] called pGCL is presented. The language includes both an
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operator � for ’demonic’ choice and an operator p⊕ for probabilistic choice.
The following intuitive explanation is given for the meaning of the construct
this � that : ’The customer will be happy with either this or that ; and the imple-
menter may choose between them according to his own concerns.’ This indicates
that the role of the � operator in a pGCL specification is to express underspec-
ification, similar to the role of the alt operator in (probabilistic) STAIRS. By
specifying probabilistic choices the role of the p⊕ operator in pGCL corresponds
to the role of palt in probabilistic STAIRS. There is no notion of inconclusive
behavior in pGCL.

[Heh04] shows how probabilistic reasoning can be applied to predicative pro-
grams and specifications. Nondeterminism is disjunction, and equivalent to a
deterministic choice in which the determining expression is a variable of un-
known value (probability). Nondeterminism gives freedom to the implementer;
it can be refined by a deterministic or a probabilistic choice. Since the imple-
menter is not forced to produce both alternatives, the nondeterminism in [Heh04]
corresponds to underspecification in STAIRS. Cases where both alternatives
need to be possible are expressed by a probabilistic choice, as in probabilistic
STAIRS.

6 Conclusion

This article has shown the need for underspecification, inherent nondetermin-
ism and probability in specifications. We have demonstrated that these phe-
nomena are adequately expressed in STAIRS and probabilistic STAIRS by the
operators alt, xalt and palt. New insight has been gained into the interplay be-
tween these operators through studies of simple examples. The focus of this
paper has been on the theoretical understanding of how underspecification and
inherent nondeterminism is expressed in specifications and represented seman-
tically. The simplicity of the specifications has allowed us to properly explain
their semantic representations. For more examples related to communication see
[HHRS05b], [RHS05c] and [RHS05a]. We firmly believe that STAIRS and prob-
abilistic STAIRS offer a suitable expressiveness for practical specifications, and
intend to show this in the future through studies of real-life specifications.

The research on which this paper reports has been partly carried out within
the context of the IKT-2010 project SARDAS (15295/431) and the IKT SOS
project ENFORCE (164382/V30), both funded by the Research Council of Nor-
way. We thank Roberto Segala and the other members of the SARDAS project
for useful discussions related to this work. We also thank the anonymous review-
ers for constructive feedback.
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