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Abstract A security risk analysis will only serve its purpose if we can trust that the
risk levels obtained from the analysis are correct. However, obtaining correct risk
levels requires that we find correct likelihood and consequence values for the un-
wanted incidents identified during the analysis. This is often very hard. Moreover,
the values may soon be outdated as the system under consideration or its environ-
ment changes. It is therefore desirable to be able to base estimates of risk levels
on measurable indicators that are dynamically updated. In this paper we present
an approach for exploiting measurable indicators in order to obtain a risk picture
that is continuously or periodically updated. We also suggest dynamic notions of
confidence aiming to capture to what extent we may trust the current risk picture.

1 Introduction

In order for a security risk analysis of a computer system to serve its purpose, we
need to trust that the risk levels obtained for the identified risks are (at least roughly)
correct. This requires finding good answers to the following questions: 1) How
likely is the unwanted incident in question to occur? 2) What is the consequence
if this incident occurs? 3) How do the consequence value and the likelihood value
combine into a single risk value? Unfortunately, in most cases the answers obtained
from a risk analysis will provide a snapshot reflecting a single point in time. Hence,
the risk values may soon be outdated as the system or its environment change.

Moreover, finding correct likelihood values is often very hard. This is typically
the case if we are analyzing a new system where historical data do not exist, or if
the incident in question cannot easily be observed directly, such as an eavesdropper
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reading a sensitive e-mail. Finding correct consequence values may also be difficult,
particularly in cases where the asset we seek to protect is not easily measured in
terms of money, such as confidentiality of sensitive data.

All this means that we need to seek ways of obtaining good estimates of likeli-
hood and consequence values. One way of doing this is to base the assessments on
measurable indicators that are seen as relevant for the unwanted incident in ques-
tion, even though its likelihood or consequence value cannot be directly inferred
from any of these indicators. For example, if we want to estimate the likelihood that
an intruder accesses sensitive data by logging on to a system with the username and
password of a legitimate user, it may be useful to know how many passwords have
not been changed during the last three months and how many of the users do not
comply with the company’s password strength policy. If likelihood, consequence
and risk levels are defined as functions of indicators, we also ensure that risk lev-
els can be updated as soon as the indicators are updated, rather than representing a
snapshot at a given point in time.

Having assigned likelihood values to the relevant threat scenarios and unwanted
incidents, we are also interested in estimating the level of confidence we may have
that the risk levels obtained are in fact correct, and to uncover weaknesses of the
analysis. One way of achieving this is to check whether the risk picture is consistent
with respect to likelihood values. This can be done by assigning likelihood not only
to the unwanted incident that harms an asset, but also to the potential threat scenarios
that may lead to this incident. The likelihood of the unwanted incident can then be
compared to the likelihood of the threat scenarios.

This paper presents an approach for providing a dynamic risk picture and for as-
sessing to what degree we can be confident that the risk levels obtained are correct.
A basic assumption of the approach is that an infrastructure is available for defining
and monitoring the measurable indicators required. Providing such an infrastruc-
ture is an important goal for the project MASTER (see http://www.master-fp7.eu/),
which addresses the challenge of managing assurance, security and trust for service-
oriented systems. Although the work presented has been carried out within the con-
text of the MASTER project, the approach we present is general in the sense that we
just assume the availability of a palette of monitored indicators; the infrastructure
required to obtain them is not considered.

The rest of this paper is structured as follows: In Section 2 we present the con-
ceptual model on which the approach is based. A high-level description of the ap-
proach, as well as the underlying assumptions, is given Section 3, which ends with
presenting three steps that need to be performed in order to carry out the dynamic
risk monitoring. Based on an example case, these three steps are further explained
in Sections 4, 5, 6. We then explain how the internal consistency of the risk picture
can be checked in Section 7, and discuss measures of confidence in the analysis
in Section 8. Some related work is presented in Section 9, before we conclude in
Section 10.
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2 Conceptual model

Figure 1 shows the conceptual model for risk and closely related concepts on which
our approach is based. The model is shown as a UML class diagram with explana-
tory text on the associations. A risk involves an unwanted incident, such as sensitive
patient data being disclosed to outsiders. The unwanted incident may occur with a
certain likelihood. When it occurs, an asset will be damaged (and its value reduced)
– this is the consequence of the risk. An asset is something of value that we seek to
protect. Assets can be anything from physical objects such as computers to abstract
entities such as confidentiality of information or the reputation of a stakeholder. If
the asset we are concerned with is the reputation of the hospital, and the identified
incident is sensitive patient data being disclosed to outsiders, then the consequence
related to this incident could be a certain reduction of (or damage to) the hospital’s
reputation. In the diagram, we have assigned consequence directly to the risk, rather
than to the unwanted incident. This has been done in order to emphasize that the
consequence of an incident, unlike its likelihood, is not a property of the incident
per se, as the consequence also depends on the particular asset in question and its
measure.

In order to obtain a clear risk picture and be able to choose and prioritize between
treatments, we need to assign a risk value to each risk that has been identified. This is
done by applying the risk function, which takes the consequence and the likelihood
of the unwanted incident of the risk as input. Hence, consequence and likelihood
need to be measured according to some suitable scale. Typically, likelihood is mea-
sured in terms of frequency or probability. Consequence may be measured by for
example monetary value or the number of data items affected by the incident, de-
pendent on the nature of the asset in question. The risk function is defined by the
risk analysis team and depends on the scales chosen for measuring consequence and
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Fig. 1 Conceptual model for risk and closely related concepts.
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likelihood. If we are measuring likelihood in terms of frequency and consequence
in terms of monetary value, we may use multiplication to obtain a risk value. For
example, from a consequence of 10000 euros and a likelihood of 3 times per year
we get a risk value of 30000 euros per year. If qualitative scales are used for mea-
suring consequence and likelihood, then the risk function defines how the possible
consequence and likelihood values combine into a risk value. For example, a con-
sequence value “catastrophic” and a likelihood value “seldom” may combine into a
risk value “high”.

As discussed in Section 1, obtaining correct consequence and likelihood values
is a major challenge. Therefore it may be highly useful to be able to identify rel-
evant and measurable key indicators on which estimates can be based. Notice that
the multiplicity symbol * on each end of the associations between the KeyIndicator
class and the Likelihood class in Figure 1 means that there is a many-to-many re-
lationship between key indicators and likelihoods; one likelihood may be obtained
from several key indicators, and one key indicator may be used to obtain the like-
lihood of several unwanted incidents. The same holds for the relation between key
indicators and consequences.

3 The approach

Figure 2 outlines our vision for a dynamic risk monitor defined on the top of some
monitoring infrastructure. In this paper we just assume the availability of a monitor-
ing infrastructure offering a palette of continuously monitored key indicators that we
may select from. The key indicators are quantitative measures that are considered
relevant for finding the likelihood or consequence of an unwanted incident. In many
cases, indicator values will be calculated automatically by the system. For example,
the system can recognize a certain kind of event and count the number of occur-
rences of such events. In other cases, the indicator values will be obtained manually.
For example, the number of errors detected in a periodic review of a sample of the
records stored in a database may be input into the system to provide an indicator
value. Our envisaged dynamic Risk Monitor consists of three modules as indicated
in Figure 2, and the rest of this paper is devoted to establishing the data required for
it to function, given the assumed availability of a palette of key indicators.

Dynamic risk pictureKey Indicators

Risk Monitor

Indicator Description Value
K1   ...             23
K2   ...           217
K3   ...          0.78

ConfidenceConsistency

Fig. 2 Risk Monitor modules.
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The “Dynamic Risk Picture” module allows the user to monitor the likelihood,
consequence, and risk values, thereby providing a more high-level view than the
“Key Indicators” infrastructure. Values may be presented in graphical diagrams that
show how threat scenarios lead up to unwanted incidents; likelihood values may be
assigned to threat scenarios as well as unwanted incidents. The values are obtained
from functions for calculating likelihood and consequence values from sets of key
indicators, as well as for calculating risk values from likelihood and consequence
values. These functions are defined during the risk analysis of the system, as the
relevant risks will depend on the system in question.

The “Risk Consistency” module checks whether the risk picture is consistent at a
given point in time. This can be done by comparing likelihoods for threat scenarios
assumed to lead up to an unwanted incident with the likelihood of the actual inci-
dent. For example, if a certain threat scenario is assigned probability “twice a year”,
and is assumed to lead to a certain unwanted incident with probability 0.5, then the
likelihood assigned to the unwanted incident should be at least “once a year”. But it
can also be higher, if there are other threat scenarios leading up to the same incident.
In Section 7 we present calculation rules taken from [BDS08] that can be utilized in
order to check whether the likelihood values assigned to a diagram are consistent.

Finally, the “Confidence” module offers a quantitative measure of confidence
in the current risk picture, thereby providing an aggregated view from which the
correctness of the analysis can be assessed. The aim is to estimate to what extent
we may trust that the risk levels are correct based on the degree of inconsistency
detected in the risk picture.

The programming of the dynamic risk monitor may of course be work consum-
ing, but not very challenging from a research point of view. The real issue of research
is how to come up with the data to display, and this is what we concentrate on in
the rest of the paper. We propose an approach of three steps that need to be carried
out before monitoring can start, which we will describe in further detail in the next
sections:

1. Perform an initial risk analysis of the system. This step serves a number of pur-
poses. It provides information about what are the relevant risks and a rough anal-
ysis of the risk levels, so that a decision can be made of which risks need to be
monitored. Furthermore, it provides information about how threats exploit vul-
nerabilities to initiate threat scenarios leading to unwanted incidents, which is
essential for the later steps.

2. Identify relevant key indicators for the risks to be monitored. This is done based
on the understanding obtained through the initial analysis in the previous step.
Indicators may be related not only to an unwanted incident that is directly asso-
ciated with a risk, but also to vulnerabilities and threat scenarios leading up to
this incident.

3. Find functions for likelihood, consequence, and risk values. Likelihood and con-
sequence values are calculated from sets of key indicators, while risk values are
calculated from the likelihood and consequence value for the unwanted incident
in question.
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4 Performing the initial risk analysis of the system

We consider a hospital concerned about protecting the integrity of patient records.
All details have been made up. Hence, the unwanted incidents, threat scenarios, risk
levels and other aspects of the analysis presented here do not reflect any real case.

The patient record database can only be accessed from terminals in the hospital’s
office area. Access to the terminals is protected by user names and passwords. A
password strength policy has been issued informing employees of requirements with
respect to passwords length, use of numerical characters and so on. In addition, users
are expected to change their password every third month. Users do not in general
have access to all the patient records. For example, a doctor has only access to the
records of her/his own patients. Before leaving a terminal, users are supposed to log
off. Users are logged off automatically if a terminal has been inactive for a certain
time (the delay logoff interval).

The doors into the office area are normally kept closed and locked at all times,
and are fitted with keycard locks. In order to open a door, a keycard has to be inserted
into the lock. The door will then open up and remain open for a certain interval in
order to allow entry. If the keycard lock of a door is defective the door will unlock.
Keycard locks are fitted with a failure detection system that generates a signal if the
lock is defect.

The asset that we seek to protect for the purpose of this example is integrity
of patient data. There is, of course, many ways in which we can imagine that this
asset may be harmed. In order to limit the scope, the analysis will be restricted
to external threats, and we consider only cases where such data are accessed by
intruders into the office area that are not part of the hospital staff. To conduct the
initial risk modeling and analysis of the system we employ CORAS. However, other
approaches may also be used.

CORAS [dBHL+07] provides a method, a language, and a tool for asset-oriented
risk analysis. The CORAS method consists of seven steps. For the purpose of this
paper, we focus on only a few of these. In order to assign likelihood and consequence
values to unwanted incidents, we need to establish some suitable scales for this that
are useful for making assessments. Table 1 shows the scales that will be used to
measure consequence for the “Integrity of patient records” asset in this paper, as
well as the scale that will be used for measuring likelihood. Note that by choosing

Table 1 Consequence scale (left) and likelihood scale (right)

Consequence Description Likelihood Description

Catastrophic > 400 records affected Very often > 100 times per year
Major 101-400 records affected Often 21−100 times per year
Moderate 21-100 records affected Sometimes 6−20 times per year
Minor 3-20 records affected Seldom 3−5 times per year
Insignificant 0-2 records affected Very seldom ≤ 2 times per year
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to measure consequence for integrity of patient data only in terms of the number of
records affected, we do not distinguish between different levels of importance for
different records. If necessary, we could have identified separate assets for records
based on their importance.

After deciding upon the suitable scales for consequence and likelihood, the an-
alysts establish the risk evaluation criteria that states which level of risk the client
accepts for each asset. The result is typically recorded as a risk matrix that shows
which combinations of consequence and likelihood values that are acceptable and
which are not. Table 2 shows such a matrix. A gray box means that the risk level is
so high that the risk needs to be further evaluated for treatment.

Table 2 Risk evaluation matrix
Consequence
Insignificant Minor Moderate Major Catastrophic

F
re

qu
en

cy

Very seldom
Seldom
Sometimes
Often
Very often

After establishing the risk evaluation criteria, the next steps concern identifying
potential unwanted incidents and the scenarios leading up to these incidents. The
result is documented in threat diagrams. Threat diagrams show how threats exploit
vulnerabilities to initiate threat scenarios and unwanted incidents, and what assets
are harmed if the unwanted incident occurs. A threat scenario is a scenario that
may lead to an unwanted incident or to another threat scenario. Figure 3 shows the
symbols used to denote threats (of three different kinds), vulnerabilities, threat sce-
narios, unwanted incidents and assets. Except from vulnerabilities, these elements
are referred to as vertices. Figure 4 shows a threat diagram for the hospital exam-
ple. Note that this is not intended to represent a complete analysis. In addition to
the symbols shown in Figure 3, a threat diagram contains relations represented by
arrows between the vertices, possibly via one or more vulnerabilities. These vul-
nerabilities are then considered to be a part of the relation. Hence, a threat diagram
consists of a set of vertices and a set of relations between the vertices. For a formal
definition of the language, see [BDS08]. There are three kinds of relations: “initi-
ate”, “leads-to” and “impact”. An “initiate” relation goes from a threat to a threat
scenario or an unwanted incident, and shows that the threat initiates the threat sce-
nario or unwanted incident. Possibly, the threat achieves this by exploiting one or

Unwanted
incident

[likelihood] Asset

Threat scenario
[likelihood]VulnerabilityThreat

(accidental)
Threat

(deliberate)
Threat

(non-human)

Fig. 3 Basic building blocks of CORAS threat diagrams
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more vulnerabilities, which are then shown on the arrow from the threat to the threat
scenario or unwanted incident.

The “initiate” relation in the left-hand part of Figure 4 shows that the threat “In-
truder” exploits the vulnerability “Weak access control to hospital offices” to initi-
ate the threat scenario “S1: Intruder accesses patient records terminal”. 1 From threat
scenario S1 there is a “leads-to” relation showing that this scenario may lead to the
threat scenario S2 via the vulnerability “Weak logoff dicipline”. This means that the
intruder accesses a terminal where the previous user has not logged off before leav-
ing the terminal. The “leads-to” relation from S2 show that this scenario may lead
to the unwanted incident U1, which impacts the asset “Integrity of patient records”.
From threat scenario S1 there is also another “leads-to” relation to S3 showing that
the intruder may achieve the same unwanted incidents by logging on to a terminal
with the user name and password of an employee.

Having identified the unwanted incidents, threats, vulnerabilities, and threat sce-
narios, as well as the “initiate”, “leads-to” and “impact” relations between them, the
next step is to assign likelihood and consequence values. This has also been done in
Figure 4. Likelihood values are inserted in brackets on the threat scenarios and un-
wanted incidents, while consequence values are inserted on the “impact” relations
from unwanted incidents to assets. Probability intervals have also been assigned to
the “leads-to” relations from threat scenarios to unwanted incidents.

5 Identifying relevant key indicators

In order to calculate and monitor risk values based on key indicators, we first need
to identify the indicators that are of relevance for the risks in question. As seen in
Section 4, CORAS threat diagrams illustrate graphically how unwanted incidents
result from threats exploiting vulnerabilities to initiate threat scenarios. These dia-
grams can be exploited in a structured brain storming in order to identify relevant
key indicators. The analysis leader can direct the attention of the analysis team to

S3: Intruder logs on to the 
patient records database 
with  the password and 

username of an employee
[often]

Intruder

Weak
password

requirements

S1: Intruder accesses 
patient records terminal

[very often]

[very often]

U1: Patient 
records corrupted 

by intruder
[seldom]

S2: Intruder accesses 
patient records database 
without having to log on

[seldom]
Weak logoff 

discipline

Integrity of 
patient records

major[0.1,0.3]

[0.1,0.3]

Weak access 
control to 

hospital offices

Fig. 4 Threat diagram with likelihood and consequence estimates

1 We use S1,S2,S3 as shorthand names for threat scenarios, and U1 for the unwanted incident.
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the different elements of the diagram one at a time, each time asking for suggestions
for suitable indicators and noting these down at the relevant place in the diagram.
Thereby, the team is encouraged to think about not only indicators directly associ-
ated with the unwanted incident, but also indicators that are more closely related
to vulnerabilities and scenarios leading up to the incident. Figure 5 shows a possi-
ble result of applying this process on the diagram in Figure 4. Indicators have been
chosen in order to illustrate different aspects of the approach, and do not repre-
sent a real (or exhaustive) analysis. Key indicators are shown as boxes with a dial
in the upper right-hand corner, and are attached to vulnerabilities, threat scenarios,
unwanted incidents and “impacts” relations. The indicators K1 “Time interval for
opening of doors” and K2 “Total time that keycard locks have been defect during
the last 3 months” have been attached to the vulnerability “Weak access control to
hospital offices”. The reasoning is that it will be easier for an intruder to access the
office area if doors remain open for a relatively long time after someone has entered
or left, or if a keycard lock is defect so that the door is unlocked. For the vulner-
ability “Weak logoff discipline”, the indicators K3 and K4 have been identified as
relevant, measuring how often it occurs that users are automatically logged off due
to inactivity, and the length of the logoff delay interval, respectively. For assessing
the likelihood of the unwanted incident “Patient data corrupted by intruder”, we as-
sume that periodic reviews are held of random samples of the patient records. The
doctors of the patients in question are asked to go through the records to check that
the data are correct. For example, recorded treatments should match the patient’s
disease. The indicator K5 measures the percentage of records with errors reported
by doctors in the sample review. The indicators K6 “Number of passwords that do
not fulfill password strength policy” and K7 “Number of passwords that have not

S3: Intruder logs on to the 
patient records database 
with  the password and 

username of an employee
[fS3]

Intruder

Weak password 
requirements

Weak access 
control to 

hospital offices

S1: Intruder accesses 
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[very often]
pS1 S3

fI S1

U1: Patient
data corrupted by 

intruder
[fU1]

S2: Intruder accesses 
patient records database 
without having to log on
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Weak logoff 
discipline

pS1 S2

Integrity of 
patient records

cU1
[0.1,0.3]

[0.1,0.3]

K1: Time interval 
for opening of 
doors

K2: Total time that 
keycard locks have 
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the last 3 months

K3: Number of inactivity 
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last 3 months

K4: Inactivity logoff delay 
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K6: Number of passwords that do not fulfill 
password strength policy
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changed in the last 3 months
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patient records 
accessible for an 
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K8: Number of 
unrecognized
log-ons reported by 
employees the last 3 
months

K5: Percentage
of patient records 
with errors detected 
in the last periodic 
sample review

Fig. 5 Threat diagram with indicators attached
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been changed in the last 3 months” have been identified for the vulnerability “Weak
password requirements”. For threat scenario S3, the indicator K8 has been intro-
duced as an aid in assessing the likelihood. The idea is that a message with the date
and time of the previous log-on pops up each time a user logs on, and the user is
asked whether she or he can confirm that this is correct. The indicator K8 measures
the number of occurrences where users give a negative answer during the last three
months. Finally, the indicator K9 measures the number of patient records that are ac-
cessible for an average user. This indicator is attached to the “impacts” relation from
the unwanted incident “Patient data corrupted by intruder” to the asset “Integrity of
patient records”, showing that this indicator can be used as an aid in assessing the
consequence of this incident.

Note that likelihood and consequence values have been replaced by function
names for the vertices and relations for which indicators have been identified. These
functions are explained in the next section.

6 Finding functions for likelihood, consequence, and risk values

After identifying relevant key indicators for the risks to be monitored, the next step
is to define functions for calculating likelihood and consequence values from the in-
dicators. This is done for all the vertices and relations for which relevant indicators
have been identified. For example, for the “initiate” relation from the threat “In-
truder” to S1 we need to define a function that calculates the frequency with which
an intruder initiates this threat scenario from the indicators K1 and K2.

We use function names with subscripts to show which function we are deal-
ing with, according to the following convention: The first letter denotes the type
of the output of the function; f for frequency, p for probability, and c for con-
sequence. The subscript denotes which frequency/probability/consequence we are
talking about, and we use → in the subscript when referring to a relation between
two vertices. For example, fI→S1(K1,K2) denotes the function for calculating the
frequency with which the intruder initiates S1 (I is shorthand for “Intruder”) from
K1 and K2, pS1→S3(K6,K7) denotes the function for calculating the conditional
probability that S1 leads to S3 from K6 and K7, and f S3(K8) denotes function for
calculating the frequency of S3 from K8.

When defining the functions for the vertices and relations where indicators have
been attached, we may get some guidance from the values of the indicators at the
time when the initial analysis was performed, as the functions should give likeli-
hood (and consequence) values in the intervals obtained in the initial analysis when
applied on these values. Table 3 shows the indicator values that we assume apply at
the time of the initial analysis in our example. Exactly how to define the functions
depends on each particular case, and must be based on the expertise and judgment of
the analysis team, as well as existing statistical data if available. We now describe
how it might be done for the example. Note that the definitions below have been
made up in order to illustrate the approach.
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Table 3 Key indicators with values at the time of the initial analysis.

Name Description Domain Unit Value

K1 Time interval for opening of doors. {2, . . . ,30} seconds 16
K2 Total time that keycard locks have been defect during {0, . . . ,2160} hours 24

the last 3 months.
K3 Number of inactivity logoff occurrences during {0, . . .} - 21

the last 3 months.
K4 Inactivity logoff delay interval. {5, . . . ,30} minutes 8
K5 Percentage of patient records with errors detected [0,1] - 0.01

in the last periodic sample review.
K6 Number of passwords that do not fulfill password {0, . . . ,200} - 40

strength policy.
K7 Number of passwords that have not been changed in {0, . . . ,200} - 35

the last 3 months.
K8 Number of unrecognized log-ons reported by employees {0, . . . ,200} - 6

the last 3 months.
K9 Number of patient records accessible for an average user. {0, . . . ,2500} - 224

We start with the function fI→S1(K1,K2). From Figure 4 we see that an initial
estimate has been made for the current value of this function. The analysts therefore
note that the function should, when applied to the above values for K1 and K2, give
a frequency value “very often”, which corresponds to more than 100 times per year.

Based on existing data about physical access control, their own experience in
the field, and knowledge about the hospital in question, the analysts expect that if
a door is unlocked (due to a defect keycard lock), there will be on average one
intruder every day, or 365 intruders per year. As three months equals 2160 hours,
and K2 gives the number of hours a keycard lock is defect during a three month
period, the contribution to f I→S1(K1,K2) due to defect keycard locks is K2

2160 ×365.
Furthermore, the analysts expect that as long as the keycard locks function properly,
the number of intruders per year will be proportional to the opening interval of
doors. In the worst case, where doors remain open for 30 seconds after being opened,
the analysts consider that it will be almost as easy to gain access as when a keycard
lock is broken, as there is a lot of traffic in and out of the hospital; they therefore
expects 300 intruders per year in this case. In the best case, where doors only remain
open for 2 seconds after being opened, it will be much harder to gain access by
following after a hospital employee. In this case the analysts expect 20 intruders per
year. This gives the contribution (1− K2

2160 )× 10×K1 for the time periods when
no keycard locks are defect. All in all, the above considerations give the following
function:

fI→S1(K1,K2) =
K2

2160
×365+(1− K2

2160
)×10×K1 (1)

Applying this function on the arguments K1 = 16 and K2 = 24 gives a value of 162
per year, which is indeed in accordance with the initial estimate.

For defining the function pS1→S2(K3,K4), the analysts assume that the value will
be at least 0.01, and at most 0.95. Within these limits, the probability is expected
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to be proportional with the product of K3 and K4 and be given by K3×K4
x for some

suitable x, as the product of K3 and K4 says something about the length of time
during the observation period there will be terminals where the user have forgotten
to log off. Clearly, the value of x has to be set so that a suitable probability is ob-
tained. The analysts decide to estimate this number from the case where K3 = 300
and K4 = 10. In this case, the value of pS1→S2(K3,K4) is expected to be 0.5. Hence,
the value of x is given by 300×10

x = 0.5, which gives x = 6000. The analysts confirm
that this is a suitable value for x by inserting alternative values for K3 and K4, in
each case verifying that the resulting probability is within their expectations. These
considerations give the following definition of pS1→S2(K3,K4):

pS1→S2(K3,K4) =

⎧⎪⎨
⎪⎩

0.01 if K3×K4
6000 ≤ 0.01

0.95 if K3×K4
6000 ≥ 0.95

K3×K4
6000 otherwise

(2)

For defining the function pS1→S3(K6,K7) for calculating the conditional proba-
bility that S1 leads to S3 from K6 and K7, the analysts assume that the value will
be at least 0.01, which is the case where all users change their password every third
month and follow the password strength policy (i.e. when K6 = K7 = 0), and at most
0.7, which is the case when none of the users do this (i.e. when K6 = K7 = 200).
The analysts consider an old password to be just as bad as a weak password (and a
password that is both old and weak to be twice as bad), and expects that the proba-
bility will depend linearly on the sum of K6 and K7 between these limits. This gives
the following definition:

pS1→S3(K6,K7) =
0.69× (K6+K7)

400
+ 0,01 (3)

Note that, according to the above definitions and the possible values of the in-
dicators, the probability that S1 leads to S2 and the probability that S1 leads to S3
may sum up to more than 1. The reason for this is that we assume that an intruder
may initiate both S2 and S3, so that they are not mutually exclusive. For example,
when gaining access to a terminal where the previous user has forgotten to log off,
the intruder may decide to try to log on as a different user in order to gain access
to patient records that are not accessible for the previous user. In general, CORAS
diagrams do not require that the sum of probabilities for the outgoing relations from
a vertex should add up to 1 or less, as one scenario may lead to a number of different
scenarios or unwanted incidents simultaneously.

For calculating the frequency of S3 from K8, the analysis team assumes that
the number of unrecognized log-ons reported by employees (and measured by K8)
reflects the actual situation reasonably well. Therefore, they decide to simply use the
value of K8 multiplied with 4 to obtain the number of occurrences per year, rather
than per 3 months.

fS3(K8) = K8×4 (4)
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Inserting the current value of K8 = 6, this gives a frequency of 24 times per year,
which is in accordance with the initial estimate “Often”, i.e. from 21 to 100 times
per 10 years.

For calculating the frequency of U1 from K5, the analysts decide to set a mini-
mum value of 2 per ten years, independently of K5. This is done in order to avoid
a situation where the risk value associated with U1 becomes 0 in the cases where
the frequency is so low that it might not be captured by the periodic sample review.
Above this minimum value, the frequency is assumed to be proportional with K5.
In order to obtain a frequency from the probability K5, the analysts reason as fol-
lows: There are 2500 patient records in all, so the number of records with errors
are 2500×K5. The records have an average age of 5 years, and errors are assumed
to have been introduced during the last 5 years, which means that the frequency
of error introduction is 2500×K5

5 per year. These considerations give the following
function:

fU1(K5) =

{
2 if K5×500 < 2

K5×500 otherwise
(5)

Inserting the current value of K5 = 0.01, this gives a frequency of 5 times per year,
which is in accordance with the initial estimate “Seldom”, i.e. from 3 to 5 times per
year.

The last place in the diagram where an indicator has been identified is the “Im-
pacts” relation from U1 to the asset “Integrity of patient data”. It therefore remains
to define a function that calculates the consequence of U1 from the relevant indica-
tor K9. For an incident where data is corrupted, the consequence may clearly depend
on the nature of the corruption. The intruder may, for example, add false informa-
tion or delete some or all fields of one or more records. However, it was decided in
the initial analysis that consequence should be measured simply in the number of
records affected. The analysts decide to assume that the intruder, when corrupting
patient data, manages to corrupt all the records available for the user in question.
As K9 measures the number of patient records available for an average user, they
therefore decide to define the function simply as follows:

cU1(K9) = K9 (6)

7 Evaluating consistency

Obtaining a correct threat diagram with suitable indicators and functions for cal-
culating likelihood values from indicators will clearly be quite challenging. As il-
lustrated by the previous section, the subjective judgments made by experts and
analysts will typically play a major role. It is therefore important to have ways of
discovering weaknesses and aspects that need to be reconsidered. Being able to au-
tomatically check whether the values obtained are consistent is therefore important.
By consistent we mean that the likelihood value assigned to a vertex should match
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the value that can be obtained from the likelihood values of the preceding vertices
and incoming “leads-to” relations. For example, the frequency of S3 should match
the frequency we obtain from the frequency of S1 and the probability assigned to
the “leads-to” relation from S1 and S3. The CORAS calculus introduced in [BDS08]
provides rules that can be employed to calculate the likelihood of a vertex indirectly
in this way. This allows us to check the consistency of likelihood values for the
vertices where we have one value calculated directly from the indicators attached
to the vertex and another value calculated indirectly from preceding vertices and
“leads-to” relations. In our example this is the case for S3 and U1.

Before showing how the consistency for these two vertices can be analyzed, we
now explain some of the most important rules of the CORAS calculus. For a more
comprehensive presentation, see [BDS08]. In the following we use t to denote a
threat, while v,v1,v2 denote vertices that may be threat scenarios or unwanted in-

cidents. We use t
f−→ v to denote that t initiates v with frequency f , while v1

p−→ v2

denotes that v1 leads to v2 with conditional probability p. v( f ) denotes that vertex v
occurs with frequency f .

The “initiate” rule captures the semantics of the “initiate” relation. The frequency
of the occurrences of vertex v due to threat t is equal to the frequency with which t
initiates v. This is captured by the following rule, where t � v can be understood as
“the subset of the scenarios/incidents v initiated by threat t”.

Rule 1 (Initiate) For threat t and vertice v related by “initiate”, we have:

t
f−→ v

(t � v)( f )

The “leads-to” rule captures the conditional probability semantics embedded in
the “leads-to” relation. The likelihood of the occurrences of v 2 that are due to v1 is
equal to the frequency of v1 multiplied with the conditional probability that v1 will
lead to v2 given that v1 occurs. This is captured by the following rule, where v 1 �v2

can be understood as “the subset of the scenarios/incidents v2 that result from v1”.

Rule 2 (Leads-to) For the vertices v1 and v2 related by “leads-to”, we have:

v1( f ) v1
p−→ v2

(v1 � v2)( f × p)

If two vertices are mutually exclusive the likelihood of their union is equal to
the sum of their likelihoods. This is captured by the following rule, where v 1 � v2

denotes all instances of the scenarios/incidents v1 and v2.

Rule 3 (Mutually exclusive vertices) If the vertices v1 and v2 are mutually exclu-
sive, we have:

v1( f1) v2( f2)
(v1 � v2)( f1 + f2)
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Finally, if two vertices are statistically independent, the likelihood of their union
is equal to the sum of their individual likelihoods minus the likelihood of their in-
tersection.

Rule 4 (Independent vertices) If the vertices v1 and v2 are statistically indepen-
dent, we have:

v1( f1) v2( f2)
(v1 � v2)( f1 + f2 − f1 × f2)

To illustrate the use of the consistency rules, we now assume that some time has
passed after the initial analysis, and that the indicator values have changed to the
following values: K1 = 17,K2 = 8,K3 = 23,K4 = 8,K5 = 0.03,K6 = 61,K7 =
72,K8 = 5,K9 = 230. Note that the initial likelihood and consequence estimates
assigned in Figure 4 are outdated at this point, as they applied at the time of the
initial analysis.

In order to simplify the presentation, in the following we set p S2→U1 = pS3→U1 =
0.15. As no indicators were identified for these probabilities, the value will not
change. Furthermore, we assume that the diagram in Figure 4 is meant to be com-
plete, in the sense that there are no other threats or threat scenarios that may initiate
or lead to any of the described threat scenarios or unwanted incidents. This means
that all instances of S1 are initiated by the threat Intruder (denoted by I), and hence
that S1 = I�S1. Furthermore, it means that all occurrences of S2 and S3 are due to
S1 (i.e. that S2 = S1�S2 and S3 = S1�S3), and that all occurrences of U1 are due
to S2 or S3, i.e. that U1 = (S2�U1)� (S3�U1). This completeness assumption
allows us to view the likelihood estimates obtained through use of the above rules
as actual values, rather than lower limits.

We first look at the consistency of the frequency of S3. This value can be ob-
tained either indirectly from the preceding vertices and relations by application of
the above rules, or directly from (4). With the new value for K8, the latter approach
gives the frequency 20 per year for S3. Taking the indirect approach, we start by cal-
culating the frequency with which the intruder initiates S1. The new values for K1
and K2 gives fI→S1(K1,K2) = 171. We then apply Rule 1 to obtain the frequency
171 per year for S1. Now we want to apply Rule 2 to calculate the frequency of S3
from the frequency of S1. First we calculate pS1→S3(K6,K7) = 0.24 from the new
indicator values. Rule 2 then gives us the frequency 171× 0.24 = 41 per year for
S3. Hence, we have a difference of 21 per year for the two estimates of frequency
for S3. For simplicity, in the following calculations we will use S3 = 41 rather than
S3 = 20, but we could also have tried both values in order to see which gives the
highest degree of consistency.

Next, we want to check the consistency of frequency estimates for U1. Again,
taking the direct approach is easy; applying (5) on the new value of K9, we get the
frequency 15 per year for U1. For the indirect approach, we note that both S2 and
S3 may lead to U1 according to Figure 4. However, as S2 and S3 are not considered
to be mutually exclusive or statistically independent, we cannot obtain an exact
value from Rule 3 or Rule 4. We are therefore confined to calculating maximum and
minimum values.
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Clearly, the minimum frequency of U1 cannot be lower than the highest of the
frequencies we obtain from coming to U1 from one of S2 or S3, i.e. the frequency of
either S2�U1 or S3�U1. To find the former we first need to calculate the frequency
of S2. Applying Rule 2, we obtain this value by calculating the frequency of S1 with
the probability pS1→S2(K3,K4) that S1 leads to S2, which with the new indicator
values gives the frequency 171× 0.03 = 5 times per year for S2. Applying Rule 2
on the “leads-to” relation from S2 to U1 then gives a frequency of ca 1 per year for
S2�U1. Similarly, we use Rule 2 to obtain a frequency of ca 6 per year for S3�U1.
Hence, according to these calculations the minimum frequency of U1 is 6 times per
year.

For the maximum frequency of U1, we use Rule 3 as if S2 and S3 were mutually
exclusive. Adding up the frequencies of S2�U1 and S3�U1 we thus obtain 1+6 =
7 times per year. Hence, according the indirect calculations, the frequency of U1
should be between 1 and 7 times per year, which is lower than what was obtained
through the direct calculation.

The kind of calculations and comparisons demonstrated here can be performed
automatically as the indicator values change. This can be utilized to give a warning
in cases where the risk picture is inconsistent. In the above example we saw that a
certain discrepancy was detected for both vertices that were checked. In practice it
is hardly realistic to expect the values to coincide exactly. It is up to the analysts to
decide how much two values must differ in order to count as inconsistent, and what
should be the exact criteria for triggering a warning.

8 Measuring confidence

The purpose of the Confidence module is to offer a quantitative measure of con-
fidence in the overall risk picture based on the degree of inconsistency that has
been detected. There are a number of ways in which notions of confidence may
be estimated. The measure could, for example, be based on the number of nodes
where inconsistent likelihood estimates are assigned, or on the average difference
between conflicting estimates of the same likelihood, or on some more sophisticated
statistical analysis. Furthermore, the change of indicator values over time could be
considered. If the risk picture has remained consistent over a period of time where
indicator values have changed, this gives greater reason to believe in the correctness
of the analysis, and in particular the correctness of the functions from indicators to
likelihood values, is correct than if consistency has only been observed with one set
of indicator values.

Clearly, the degree to which the analysis actually allows consistency to be
checked should also be taken into account. Values that are not checked for con-
sistency should count as neither consistent nor inconsistent. In our example above,
we are able to check the consistency of likelihood values for S3 and U1, but not for
S1 and S2. Therefore, S1 and S2 should not contribute to a high confidence value,
even if no inconsistency is detected for these vertices.
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In cases where two alternative and inconsistent likelihood estimates are obtained
for a vertex, the measure of confidence can be employed as an aid to help decide
which value is most likely to be correct. This can be done by checking which value
gives the highest confidence value. In the example above we obtain two different
values for the likelihood of S3 from the indirect and the direct calculations. When
calculating the likelihood of U1 indirectly from the likelihood of S2 and S3, we
therefore need to decide which value to use for S3. Clearly, if we choose a wrong
likelihood value for S3 we may also get a wrong likelihood value for U1, possibly
resulting in inconsistent estimates also for U1, and thus a lower overall confidence
value. We should therefore choose the value that gives the highest confidence value,
unless we have other reasons to believe that this value is wrong. After deciding
which of two conflicting values is assumed to be most correct, the next step will
then be to make the necessary corrections in order to bring the assumed wrong value
in line with the correct one, for example by redefining a function for calculating
likelihood from key indicators.

A suitable definition of confidence value based on the degree of inconsistency
may serve not only as a measure of the assumed correctness of the risk picture,
but also as an aid in improving the analysis. How to find the most suitable ways
of measuring the degree of inconsistency and the confidence value is a interesting
research question in its own right, that we will not pursue further in this paper.

9 Related work

For demonstrating the approach presented in this paper, we have chosen to use
CORAS for threat modeling and assignment of quantitative likelihood, consequence
and risk levels. However, the approach is generic in the sense that other languages
and modeling techniques may also be employed. As we have seen, a suitable lan-
guage needs to be flexible with respect to annotations of likelihood values and be
able to capture inconsistent likelihood estimates, as this allows us to uncover weak-
nesses of the subjective estimates made by the analysts. We now present some re-
lated work, with a particular view on these aspects.

Fault tree analysis (FTA) [IEC90] and related techniques like attack tree analy-
sis [Sch99, MO05] are often used to obtain the likelihood of an unwanted incident
in the context of risk analysis. In fault tree analysis, the top vertex represents an
event/fault that is decomposed into intermediate and leaf vertices by the use of log-
ical operators. The likelihood of the top vertex is calculated from the likelihood of
the leaf vertices, which are assumed to be independent, as well as the operators used
to compose vertices. Attack trees are much like fault trees, but focus on the attacks
that a system may be exposed to. Moreover, attack trees allow also other values than
probability to be assigned to the vertices, for example the cost of an attack, or qual-
itative statements such as “possible” or “impossible”. As values are assigned only
to the leaf vertices by the analysts, there is no possibility of assigning inconsistent
values for fault trees or attack trees. In addition, likelihood values are only assigned
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to vertices, and not to the relations between vertices. From a methodological per-
spective this means that we cannot define a probability function for a relation from
the indicators identified for that relation independently from the related vertices.

Bayesian networks [BG07] are directed acyclic graphs that may be used to rep-
resent knowledge and to make quantitative assessments about an uncertain domain,
and can therefore be employed in risk assessment. Nodes represent random vari-
ables, while edges between nodes represent probabilistic dependencies between
variables. A Bayesian network can be used to compute the joint probability distri-
bution over a set of random variables. Like fault trees and attack trees, probabilities
are not assigned to the edges of Bayesian networks. Instead, each node is deco-
rated with parameters that for each node give its conditional probabilities, where
the conditions represent the state of its parent nodes. The underlying mathematical
model of Bayesian networks is more complicated than that of CORAS diagrams,
but also more powerful. Rather than capturing inconsistent likelihood estimates, use
of Bayesian networks usually focus on updating likelihood values based on new
evidence. Fenton et al [FKN02, FN04] uses Bayesian networks to address the prob-
lem of quantifying likelihood based on different types of evidence, and demonstrate
how their approach can be applied to assess the frequency of defects in software or
components.

Phillips and Swiler [PS98] present a method for risk analysis of computer net-
works based on attack graphs. An attack graph is not produced directly by the anal-
ysis team, but generated automatically from configuration files containing informa-
tion about the network, attacker profiles containing information about the assumed
attacker’s capabilities, and attack templates containing information about known
generic attacks. Nodes in the attack graph represent attack states (effects of the at-
tack so far), while edges represent a change of state caused by the attacker. Each
edge is assigned a weight estimate representing a success probability or some other
measure, such as average time to succeed or effort level for the attacker. Multiple
weights may be assigned to edges. However, these are not intended to capture incon-
sistent estimates. Instead they represent potentially conflicting criteria, for example
that the attacker wishes to minimize both cost and probability of detection. From
the attack trees various kinds of analysis may be performed, such as finding a set of
low-cost attack paths or cost-effective defenses. The approach presented in [PS98]
does not address the question of inconsistency or confidence in the analysis. It is
also less generic than the one we propose, as it is specially tailored to analysis of
computer networks, with no emphasis on human behavior.

Closely related to what we call key indicators, the field of IT Security metrics
provides an approach to measuring information security. The NIST Performance
Measurement Guide for Information Security [CSS+08] aims to assist in the de-
velopment, selection, and implementation of suitable measures to this end. It also
provides a number of candidate measures, for example “Percentage of information
system security personnel that have received security training” or “Percentage of
individuals screened before being granted access to organizational information and
information systems”. Such measures are suitable candidates for key indicators. Un-
like the work we have presented, the approach taken in [CSS +08] does not neces-
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sarily aim to establish explicit frequency, consequence, and risk levels from the
identified set of measures.

An interesting approach to the uncertainty involved in risk analysis based on sub-
jective estimates is taken in [JBK04], which explains the use of subjective logic in
risk analysis. Subjective logic [Jøs07] is a probabilistic logic that explicitly takes
uncertainty about probability values into account. For example, it is possible to cal-
culate to what degree an actor believes a system will work based on the actor’s
belief about the subsystems. In [JBK04], subjective beliefs and uncertainty about
threats and vulnerabilities are used as input parameters to the analysis, allowing the
uncertainty associated with the result of the analysis to be explicitly represented.

10 Conclusion

We have presented a vision and an approach for risk monitoring where risk values
are calculated from measurable key indicators. The resulting risk picture is dynamic
in the sense that risk values are automatically updated as soon as the indicators
change. This means that we get a risk picture that remains valid over a period of
time rather than representing a snapshot. Moreover, it allows us to consider not
only the actual risk levels at a given point in time, but also to analyze trends. For
example, if a risk level has been steadily increasing over time, this might suggest
that mitigating measures should be considered even if the current risk level is lower
than the acceptance threshold. We have demonstrated the approach on the CORAS
method, but the same ideas can be used for other risk modeling languages. We claim
however that CORAS is particularly suitable due to its flexibility with respect to
likelihood annotations.

The approach allows the internal consistency of the risk picture to be assessed in
order to reveal weaknesses and issues that need to be reconsidered. A notion of con-
fidence calculated from the degree of inconsistency found in a risk picture has also
been proposed in order to assess to what degree the risk picture may be assumed
to be correct. This is important because subjective judgment and estimates play a
major role in the approach. The aim is not to eliminate the need for such subjec-
tive judgment, which would be unrealistic, but to provide support for making the
judgment and evaluating its result. Clearly, defining functions from key indicators
to likelihood and consequence values based on the subjective judgment of experts
will be a major challenge. As noted in [Vos08], eliciting from expert opinion has
a number of pitfalls and requires great care, but there are techniques for avoiding
the pitfalls. Providing tailored guidelines and methods for defining the necessary
functions from key indicators to likelihood and consequence values is an interesting
topic for further research.

When making decisions that depend on risks, having a list of potential risks is
not enough. We also need to understand how high the risks are. The work presented
here is a step towards the goal of obtaining such an understanding.
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