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Abstract In this paper we present a method based on UML sequence diagrams for in-
tegrating policy requirements with requirements to system design and functionality in the
development process. The approach allows policy requirements to be taken into account
throughout the system development instead of in a post hoc manner. The method sup-
ports the formalization of system specifications and policy specifications at various levels
of abstraction, where the abstraction levels are related by refinement. The notion of pol-
icy adherence formally captures what it means that a system specification satisfies a policy
specification. For analysis with respect to adherence at abstract levels to be meaningful, the
results must be preserved under refinement. This paper gives a characterization of conditions
under which adherence is preserved under refinement, and identifies development rules that
guarantee adherence preservation. By results of transitivity and modularity, the develop-
ment process, as well as analysis tasks, may be conducted in a stepwise manner addressing
individual parts of the specifications separately.
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1 Introduction

Policy-based management of information systems is an approach to administer
and control distributed systems with respect to issues such as security, access con-
trol, service level and trust. A policy is commonly defined as a set of rules governing
the choices in the behavior of a system[21]. Several frameworks for the specification,
development, analysis and enforcement of policies have been proposed[3,22], but al-
though recognized as an important research issue from the very initial research on
policy-based management[12], policy refinement still remains poorly explored in the
literature[1,15]. Policy refinement is in Ref.[12] referred to as the process of trans-
forming a high-level, abstract policy specification into a low-level, concrete one. At
the initial, abstract level, policies may be derived from business goals, service level
agreements, risk analyses, security requirements, etc., and policy refinement should
ensure that the enforcement of the final, concrete policy implies the enforcement of
the initial, abstract one.
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Abstraction involves the perspective or purpose of the viewer, and different pur-
poses result in different abstractions[16]. During the initial activity of policy captur-
ing, details about system entities, architecture and functionality that are irrelevant or
unimportant from a given viewpoint can therefore be ignored. Abstraction is desirable
also because detection and correction of errors, as well as policy analysis, are cheaper
and easier at an abstract and high level[26]. For analysis of abstract specifications
to be meaningful, however, the results of the proofs or verifications conducted at the
abstract level must be preserved under refinement and by the eventual implementa-
tion. Otherwise the analysis must be conducted from scratch after every refinement
step[11]. This paper addresses the problem of preservation of policy adherence under
refinement. Adherence of a system to a policy specification means that the system
satisfies the policy specification.

Figure 1 illustrates two development scenarios involving policies. In case (a)
the policy and the system are developed in sequential order. In practice this scenario
often occurs in relation to policies at the enterprise or business level that are not to be
enforced by computers. The abstract policy specification P1 may, for example, have
been derived from a risk analysis and a set of security requirements and then further
developed and refined (Ã) into the low-level and detailed policy specification Pn that
is to be enforced. Subsequently the system to which the policy applies is developed. In
order to ensure that the security requirements are satisfied by the system, the system
development is conducted in such a way that policy adherence (→a) is maintained
during the development process, once established between Pn and S1. Preservation
of adherence is denoted by the dashed arrow from Pn →a S1 to Pn →a Sm.

Case (b) illustrates a combined development of the policy specification and the
system specification. This scenario is often relevant when the policy enforcement is
computer based, e.g. in terms of monitoring. A policy specification Pi, i ∈ {1, . . . , n},
at an arbitrary level of abstraction is taken into account in the system specification
Sk, k ∈ {1, . . . , m}, also at any level of abstraction, in order to ensure adherence.
As in the previous case, Sk may be further developed into a specification Sl, but the
difference is that the development process should allow the policy specification to be
strengthened into a refined policy specification Pj .
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Figure 1. Development cases

In Ref.[24] we presented a method based on UML sequence diagrams[13] for the
formalization, analysis and development of policies. The method extends sequence



Bjørnar Solhaug, et al.: Preservation of policy adherence under refinement 141

diagrams with constructs customized for policy specification, and is generic in the
sense that it is applicable to various domains of management, such as security, ac-
cess control and trust. This extension of UML is conservative in the sense that all
language constructs are used and formalized in a manner that is faithful to the in-
formal semantics in the UML standard to the extent this is possible[17]. In Ref.[19]
we addressed case (a) of Fig.1 and showed that policy adherence is preserved un-
der refinement of system specifications formalized with UML sequence diagrams[7,18].
In this paper we address case (b) of Fig.1. In particular, this paper contributes by
proposing a formal, denotational semantics of policy specification that characterizes
the requirements imposed by the combined rules of a policy. This paper further pro-
poses a formal notion of policy adherence that precisely captures what it means, for
arbitrary levels of abstraction, that a system specification satisfies a policy specifi-
cation. A characterization of conditions under which adherence is preserved when
both policy specifications and system specifications may undergo refinement is then
presented. Finally, this paper contributes by presenting specific development rules
the application of which guarantees preservation of adherence under refinement in
the combined development process.

In Section 2 we present the syntax and formal semantics of the policy specification
language. In Section 3 we present the notion of policy adherence, and in Section 4
the notion of policy refinement. Section 5 and Section 6 are devoted to the problem
of preservation of adherence under refinement; we first give a characterization of
conditions for adherence preservations, and then we identify rules the application of
which ensures preservation of adherence in the development process. In Section 7 we
relate our work to the Focus method[4], which is an approach to the specification and
development of interactive systems that was developed by Manfred Broy and Ketil
Stølen. Finally, in Section 8, we conclude and discuss related work. We refer to
Ref.[25] for the full proofs of all the results presented in this paper.

2 Formalizing Policies

We introduce and illustrate the syntax of our approach, which we refer to as
Deontic STAIRS1), by the example diagrams depicted in Fig.2. The reader is referred
to Ref.[24] for a more detailed presentation and for the full formalization. In the
example we consider a fragment of a policy that administers the access of users U to
an application A. The application is for file sharing, and registered users can upload
and retrieve data. The example is simplified due to space constraints and is intended
to serve illustrative purposes only. The reader is referred to Ref.[23] for more elaborate
cases and examples on policy-based management using Deontic STAIRS.

Sequence diagrams specify behavior by showing how entities interact by the ex-
change of messages, where the behavior is described by traces. A trace is a sequence
of events ordered by time representing a system run, and an event is either the trans-
mission or the reception of a message by an entity. Entities are represented by lifelines
and messages are represented by arrows from lifeline to lifeline. An arrow tail denotes
the transmitting of a message and an arrow head denotes the reception of a message.

1) Deontic STAIRS is called so since it basically is an extension of STAIRS[7,18] with a trigger
construct and deontic modalities for policy specification.
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Figure 2. Policy rules

A policy rule is specified as a sequence diagram that consists of two parts, a
trigger and a rule body. The keyword rule in the upper left corner denotes the kind of
diagram. The trigger is a diagram that specifies the condition under which the rule
applies and is captured with the keyword trigger. The rule body is a diagram that
specifies the behavior that is constrained by the rule, and the keywords permission,
obligation and prohibition indicate the kind of rule.

The rule retrieve in Fig.2 is a permission rule stating that in case of a valid
user login, the user is permitted to retrieve data from the application. Notice that
data retrieval is specified using the alt construct for alternative composition. The
transmit_d message specifies that the requested data is downloaded, and possibly
saved, by the user, whereas the stream_d message specifies that the data is streamed
to the user. The alternative composition means that both alternatives are held as
valid ways of fulfilling the permitted behavior.

Semantically the body of the rule retrieve is captured by the sequential composi-
tion of the retrieve_d message with the alternative composition of the transmit_d and
stream_d messages. Events are ordered vertically along each lifeline, and a transmit
event is ordered before the corresponding receive event. The first event to occur is
therefore the sending of the retrieve_d message, which we denote !r, and is followed
by the reception of the same message, which we denote ?r. The trace representing
the first message is denoted by 〈!r, ?r〉. In order to formally capture the variation
between alternatives as exemplified by the alt construct, sequence diagrams are se-
mantically captured by trace sets. The alternative composition of the two messages
for data transfer is represented by the trace set {〈!t, ?t〉, 〈!s, ?s〉}. Sequential com-
position is formalized by the % operator, so the semantics of the rule body of the
retrieve diagram is given by {〈!r, ?r〉} % {〈!t, ?t〉, 〈!s, ?s〉}, which yields the trace set
{〈!r, ?r, !t, ?t〉, 〈!r, ?r, !s, ?s〉}. The trigger of the rule retrieve is represented by the
singleton trace set {〈!l, ?l, !o, ?o〉}.

The set of all traces, i.e. the trace universe, is denoted by H. The formalization
of the sequence diagram semantics is defined by the function [[]] that for a sequence
diagram d yields a trace set [[d]] ⊆ H. The variation over traces representing a sequence
diagram captures underspecification in the sense that each element represents a valid
way of executing the behavior specified by the diagram. Underspecification can be



Bjørnar Solhaug, et al.: Preservation of policy adherence under refinement 143

reduced by design choices or during implementation by choosing only some of the
alternatives.

The remaining two diagrams of Fig.2 exemplify the specification of prohibitions
and obligations. In case of login failure, the rule deny specifies that uploading data is
prohibited. Finally, the rule log states that in case of a login failure, the application
is obliged to log the incident. The only constructs of Deontic STAIRS that extends
standard UML are the trigger construct and the deontic modalities. However modest,
the extension provides expressiveness that allows the specification and analysis of
policies for several domains and purposes.

As a shorthand notation we often represent policy rule specifications by triples
(dm, dt, db), where dm ∈ {pe, ob, pr} denotes the deontic modality, dt is the sequence
diagram specifying the trigger, and db is the sequence diagram specifying the rule
body. We let R denote the set of all policy rule specifications. Since a policy is a set
of policy rules, a policy specification is a set P ⊆ R.

Given a trace h describing a possible run of a system for which a policy rule
(dm, dt, db) applies, h triggers the rule if h fulfills the triggering scenario dt. Since dt

is described by a set of traces, each representing a valid interpretation of the diagram,
it suffices that h fulfills at least one trace h′ ∈ [[dt]] to trigger the rule. For h to fulfill
h′, h must be a super-trace of h′ which we denote h′2h. Equivalently, we say that h′

is a sub-trace of h. We have, for example, that 〈a, b, c〉2 〈e, a, f, g, b, c, d〉. The reason
for operating with the sub-trace relation when formalizing what it means that a trace
h fulfills a diagram d of a policy rule is that it allows the policy specification to ignore
system events that are not relevant for the policy. The sub-trace relation means that
arbitrary behavior may be interleaved with the behavior described by policy rules.
For a trace set H ⊆ H, H2h denotes ∃h′ ∈ H : h′2h. The complementary relations
2/ are defined by h′ 2/ h

def= ¬(h′2h) and H 2/ h
def= ¬(H 2h). The reader is referred

to the technical report[25] for the formal definitions.
If [[dt]] 2 h holds for a policy rule (dm, dt, db), i.e. h triggers the rule, the rule

imposes a constraint on the possible continuations of the execution of h after the rule
has been triggered. A permission requires that the behavior described by the rule
body db must be offered as a potential choice, i.e. there must exist a continuation of h

that fulfills the rule body. An obligation requires that all possible continuations fulfill
the rule body, whereas a prohibition requires that none of the possible continuations
fulfills the rule body.

In the following we define the semantics of policy specifications as a function that
takes a policy specification P ∈ P(R) and a trace h ∈ H and yields a tuple (a, u, C)
that describes the requirements imposed by the rules in P given the execution of the
trace h, where a, u ⊆ H and C is a set of trace sets H ⊆ H. The interpretation of the
tuple (a, u, C) is that the set a represents the acceptable traces as specified by the
obligation rules of P that are triggered by h; the set u represents the unacceptable
traces as specified by the prohibition rules of P that are triggered by h; each set
H ∈ C represents the traces that must be offered as a potential choice as specified by
a permission rule in P that is triggered by h.

Formally, the semantics of a policy specification is defined by the following func-
tion.

[[_]]_ ∈ P(R)×H → P(H)× P(H)× P(P(H))
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We first define the function for singleton sets of policy rules P and then define
the composition of policy specifications P1 and P2. For a trace set H, H2 denotes
the set of all super-traces of elements in H, i.e. H2 def= {h ∈ H | ∃h′ ∈ H : h′ 2 h}.

Definition 1. Semantics of policy rules.

[[{(dm, dt, db)}]](h) def=





(H, ∅, {([[dt]] % [[db]])2}) if [[dt]]2 h ∧ dm = pe

(([[dt]] % [[db]])2, ∅, ∅) if [[dt]]2 h ∧ dm = ob

(H, ([[dt]] % [[db]])2, ∅) if [[dt]]2 h ∧ dm = pr

(H, ∅, ∅) if [[dt]] 2/ h

For the special case in which the policy specification is empty, i.e. P = ∅, there
are no requirements. The semantic representation of the empty policy specification is
therefore defined as follows: ∀h ∈ H : [[∅]](h) def= (H, ∅, ∅).

We refer to [[P ]](h) = (a, u, C) as the denotation of the policy specification P

with respect to the trace h. Composition of policy denotations is formally defined as
follows.

Definition 2. (a1, u1, C1)⊗ (a2, u2, C2)
def= (a1 ∩ a2, u1 ∪ u2, C1 ∪ C2)

Given the policy denotations (a1, u1, C1) and (a2, u2, C2), the sets a1 and a2

represent the obliged behavior. The composition of the policy denotations means
that both a1 and a2 are obliged, which explains the composition of these sets using
intersection. Since the sets u1 and u2 represent prohibited behavior, the composition
using union ensures that both sets remain prohibited after composition. The sets C1

and C2 represent the various behaviors that must be offered as potential alternatives as
specified by the permission rules. The union operator ensures that all the alternatives
are still represented after the composition

It follows immediately from the properties of associativity and commutativity of
∩ and ∪ that also the composition operator ⊗ is associative and commutative.

Composition of policy specifications is defined by the union operator since policy
specifications are given by sets of policy rule specifications. The following defines the
semantics of composed policy specifications.

Definition 3. [[P1 ∪ P2]](h) def= [[P1]](h)⊗ [[P2]](h)
The definition of the semantics of policy specifications captures the set of traces

that are characterized by the policy rules in question. The notion of policy adherence
that is introduced next characterizes what it means for a system (specification) to
satisfy a policy specification. As we will see, policy adherence means that obligation
rules implicitly specify unacceptable behavior also as they limit the set of accept-
able behavior. Conversely, prohibition rules for the same reason implicitly specify
acceptable behavior also.

3 Policy Adherence

The notion of policy adherence formally captures what it means that a system
specification satisfies a policy specification, where system specifications are formalized
using STAIRS. The reader is referred to Refs.[7, 18] for a detailed presentation of the
STAIRS formalization of the sequence diagram syntax and semantics. In the following
we present STAIRS by giving the example depicted in Fig.3.
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Figure 3. System specification

The diagram S shows parts of the specification of the file sharing system to which
the policy exemplified in Fig.2 applies. The full system specification would of course
be much more extensive, but we focus only on the part of relevance for the policy.
The ref construct specifies an interaction use and is a UML construct for referring
to a diagram within the specification of another diagram; the interaction use can
equivalently be replaced with the content of the referred diagram.

In addition to specifying behavior that must be offered by the system, sequence
diagrams can specify illegal behavior. Sequence diagrams are therefore semantically
represented by a pair (p, n) of positive and negative traces, respectively, p, n ⊆ H.
Traces that are neither positive nor negative, i.e. H\p∪n, are referred to as inconclu-
sive. A correct implementation must offer at least one of the positive traces and none
of the negative traces. As exemplified in Fig.3, negative behavior can be specified
using the neg construct; following an attempt of user login, the security administra-
tor SA checks whether the user id is valid. In case of a login failure, the subsequent
behavior of the user uploading data to the application is negative. Notice that the
behavior preceding the neg construct is positive; it is only the sequential composi-
tion of the preceding positive behavior with the subsequent negative behavior that is
negative.

An important feature of STAIRS is the distinction between underspecification
and so called inherent non-determinism, captured by the alt and xalt constructs,
respectively. The alt construct specifies choices between alternatives that are held as
equivalent for fulfilling a certain behavior or purpose. The xalt construct on the other
hand specifies choices of behavior that each must be offered as potential alternatives by
the implementation. The two operands of the xalt in the diagram valid, for example,
specifies that the user must be offered the choice between retrieving and uploading
data. The use of alt in the former operand means that the manner of retrieving data
is underspecified.

In order to capture inherent non-determinism, the semantics of sequence diagrams
is in STAIRS defined by the function [[]] that for a sequence diagram d yields a set
[[d]] = {(p1, n1), . . . , (pm, nm)} of pairs of trace sets. Each pair is referred to as an
interaction obligation to convey the fact that a correct implementation must offer each
of them as a potential choice of behavior. Diagram S in Fig.3 is therefore represented
by a set of three interaction obligations, one representing the scenario of invalid user
login, and two representing the choices between behaviors following a valid login. If
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the positive and negative traces of an interaction obligation overlap, i.e. if p ∩ n 6= ∅,
the traces in the intersection are interpreted as negative. We refer to the set p \ n as
the implementable traces of the interaction obligation.

Let, now, the policy specification P be given by the set of the three rules depicted
in Fig.2. The permission rule retrieve states that following a valid user login, the user
is permitted to retrieve data from the application. After the event of the user receiving
the ok message this rule is triggered by the system specification S in Fig.3. Policy
adherence requires that data retrieval subsequently must be offered as a potential
alternative, which it is by the first operand of the xalt in the diagram valid. The
prohibition rule deny and the obligation rule log of Fig.2 constrain the behavior of all
potential alternatives following the triggering behavior. The specification S adheres
to both these rules by the diagram invalid. The system specification S therefore
adheres to the policy specification P , which is denoted by P →a S. The adherence
relation is formally defined as follows.

Definition 4. Adherence of system specifications S to policy specifications P .

P →a S
def= ∀(p, n) ∈ [[S]] : ∀h ∈ (p \ n) :

h ∈ a ∧
h /∈ u ∧
∀H ∈ C : ∃(p′, n′) ∈ [[S]] : ∀h′ ∈ (p′ \ n′) : h′ ∈ H

where [[P ]](h) = (a, u, C)

The first and second conjuncts ensure that the trace h adheres to the obligation
rules and prohibition rules, respectively, of P . The third conjunct ensures adherence
to the permission rules of P by requiring that the behavior specified by each of these
rules is offered as a potential choice by S.

By the definition of adherence, the implementable traces p \ n of each interac-
tion obligation of the system specification must be within the acceptable behavior a

as specified by the obligation rules of the policy specification. The obligation rules
therefore implicitly specify unacceptable behavior also by the complement of a. Con-
versely, the prohibition rules require that the behavior must be within the complement
of the unacceptable behavior u. These properties of the adherence relation compare
to the inter-definability axioms of deontic logic where the various deontic modalities
can be defined in terms of each other. The reader is referred to Ref.[24] for a formal
account of the relations between the deontic operators in Deontic STAIRS.

Policy adherence is modular in the sense that a system adheres to a set of policy
specifications if and only if the system adheres to the composition of the policy spec-
ifications. This is expressed by the following theorem, and implies that the problem
of verification of adherence can be broken down into sub-problems.

Theorem 1. P1 →a S ∧ P2 →a S ⇔ (P1 ∪ P2) →a S

4 Policy Refinement

In this section we formally define the notion of policy refinement as a relation
between policy specifications. For policy denotations (a, u, C), refinement is defined
as follows.
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Definition 5. Refinement of policy denotations.

(a1, u1, C1) Ã (a2, u2, C2)
def= a2 ⊆ a1 ∧

u1 ⊆ u2 ∧
∀H1 ∈ C1 : ∃H2 ∈ C2 : H2 ⊆ H1 ∧
∀H2 ∈ C2 : ∃H1 ∈ C1 : H2 ⊆ H1

Refinement of a policy specification P1 to a policy specification P2 then means
that for all traces h ∈ H, the denotation of P2 with respect to h is a refinement of
the denotation of P1 with respect to h, formally defined as follows.

Definition 6. P1 Ã P2
def= ∀h ∈ H : [[P1]](h) Ã [[P2]](h)

The first and second conjuncts of Def. 5 mean that the requirements imposed by
the obligation rules and prohibition rules of the policy specifications are strengthened
under policy refinement. The strengthening may stem from reduction of underspecifi-
cation in existing rules, or from the addition of new policy rules. The third and fourth
conjuncts of Def.5 mean that all behaviors that are required to be offered potentially
by permission rules of P1 are also required by permission rules of P2 and vice versa.
The behavior described by the rule body of the permission rules may also be subject
to reduction of underspecification.

Under this notion of policy refinement, the variation over potential choices of
behavior that is required by the policy is fixed under refinement. The reduction of
underspecification, however, means that traces that are admissible at the abstract
level may be inadmissible at the refined level.

Consider again the policy specification P consisting of the three rules in Fig.2.
This specification can be refined, for example, by removing the alternative transmit_d
from the body of the permission rule retrieve. The refined policy rule is shown by the
diagram retrieve2 in Fig.4.

A further refinement option is to add alternatives to the body of the prohibition
rule using alt, for example to specify that also data retrieval should be prohibited. This
is exemplified by the diagram deny2 of Fig.4 which is a refinement of the prohibition
rule deny of Fig.2.

Figure 4. Refined policy rules

It follows immediately from Def. 5 and Def. 6 that the policy refinement relation
is reflexive and transitive. A modularity property of the policy refinement relation
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is that a policy specification P can be refined by refining subsets of P separately, as
expressed by the following theorem.

Theorem 2. P1 Ã P ′1 ∧ P2 Ã P ′2 ⇒ (P1 ∪ P2) Ã (P ′1 ∪ P ′2)
By Theorem 2, the lowest level of granularity for modular refinement of pol-

icy specifications is to refine singleton sets of rules, i.e. to refine policy rules. In
our example of Fig.2, the policy specification is the set P = {retrieve, deny, log}.
Replacing the former two with the rules of Fig.4 we obtain the policy specification
P2 = {retrieve2, deny2, log}. Because we have the refinements retrieve Ã retrieve2
and deny Ã deny2, we get by Theorem 2 the policy refinement P Ã P2.

In Ref.[24] we showed that each of a set of sequence diagram composition oper-
ators is monotonic with respect to refinement of policy rules, which implies that a
policy rule, and therefore a policy specification, can be refined by refining individual
parts of the trigger and rule body separately.

Since refinement of policy specifications is a strengthening of the requirements
imposed by the policy specification, the requirements from the abstract levels are pre-
served under refinement. The enforcement of a concrete policy specification therefore
implies the enforcement of the previous, more abstract specifications.

Theorem 3. P1 Ã P2 ∧ P2 →a S ⇒ P1 →a S

5 A Characterization of Adherence Preserving Refinements

In this section we give a general characterization of conditions under which ad-
herence is preserved in the case of the combined refinement of policy specifications
and system specifications. Subsequently, in Section 6 we identify refinement rules
that fulfill these conditions, such that the application of the rules in the development
process guarantees preservation of adherence.

Refinement of system specification in STAIRS allows reduction of underspecifi-
cation, but requires the preservation of the inherent non-determinism captured by the
variation over interaction obligations (p, n). The property of preservation of inher-
ent non-determinism ensures that policy adherence is preserved under refinement of
system specifications.

Reduction of underspecification in system specifications is achieved by redefining
previously positive traces as negative, or by redefining previously inconclusive traces
as negative. By (p, n) Ã (p′, n′) we denote that the interaction obligation (p′, n′) is a
refinement of the interaction obligation (p, n), formally defined as follows.

(p, n) Ã (p′, n′) def= (n ⊆ n′) ∧ (p ⊆ p′ ∪ n′) ∧ (p′ ⊆ p)

For sequence diagrams d and d′, refinement is defined as follows.
Definition 7.

d Ã d′ def= ∀o ∈ [[d]] : ∃o′ ∈ [[d′]] : o Ã o′ ∧
∀o′ ∈ [[d′]] : ∃o ∈ [[d]] : o Ã o′

It follows from the definition that the refinement relation is reflexive and tran-
sitive. Modular development is also supported by monotonicity of several sequence
diagram operators with respect to refinement[18].
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In Ref.[19] we showed that adherence is preserved under refinement of system
specifications for a fixed policy specification, as expressed by the following.

Theorem 4. P →a S1 ∧ S1 Ã S2 ⇒ P →a S2

We explained above that the system specification S of Fig.3 adheres to the pol-
icy specification P of Fig.2. The system specification may be refined for example
by redefining the transmit_d operand of the alt as negative. This is shown by the
sequence diagram S2 of Fig.5. By replacing the interaction use valid in Fig.3 with
that of valid2 of Fig.5, the transmit_d option is now characterized as negative by
the refuse construct. This construct is a STAIRS operator for specifying negative
behavior. For a sequence diagram d such that [[d]] = (p, n), the semantics is defined
by [[refuse d]] def= (∅, p ∪ n).

Figure 5. Refined system specification

Since the remaining stream_d alternative is a valid fulfillment of the body of the
permission rule retrieve, the refined system specification still adheres to the policy
specification. Generally, when the policy specification is fixed, adherence is preserved
under refinement of system specifications since the reduction of allowed behavior never
introduces a policy breach.

When the policy specification is not fixed, policy adherence is not preserved under
refinement in the general case. However, because policy refinement implies only a
reduction of the admissible behavior as specified by the policy, adherence of a system
specification is preserved under refinement by reducing the positive behavior of the
system specification accordingly. In other words, if P1 →a S1 has been established
at the abstract level and the policy refinement P1 Ã P2 is conducted, a system
specification S2 can be derived from S1 based on the reduction of admissible behavior
when shifting from P1 to P2 such that S1 Ã S2 and P2 →a S2.

Policy adherence is obviously preserved if the requirements imposed by the re-
fined policy specification is equivalent to the requirements imposed by the abstract
specification. Under this condition, preservation of adherence under refinement can
be formulated as follows.

∀h ∈ H : [[P1]](h) = [[P2]](h)
P1 →a S1 ∧ S1 Ã S2 ⇒ P2 →a S2

(5.1)

Notice that the premise implies P1 Ã P2 by definition. Under this condition,
there is no reduction of admissible behavior, and adherence is preserved by Theo-
rem 4. The modularity properties of policy adherence and policy refinement captured
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by Theorem 1 and Theorem 2, respectively, can be utilized by identifying parts of
the refined policy specification that is semantically equivalent to the abstract pol-
icy specification or a subset of the abstract policy specification. If, for example,
P1 ∪ P2 Ã P ′1 ∪ P ′2 and ∀h ∈ H : [[P1]](h) = [[P ′1]](h), policy adherence of a system
specification S needs only be checked with respect to P ′2 if P1 ∪ P2 →a S has been
verified.

For policy refinements P1 Ã P2 in which the semantics of the policy specifications
are not equivalent, and P1 →a S has been verified, we need to identify the traces h of
the system specification S that are admissible under P1 and inadmissible under P2.
A refinement S Ã S′ of the system specification by eliminating these traces h from
S then ensures adherence at the refined level, i.e. P2 →a S′. We let D denote the set
of all sequence diagrams, and define the function

∆(_,_,_) ∈ P(R)× P(R)×D → P(H)

that takes the policy specifications P1 and P2 and the system specification S as
operands and yields the set H of positive traces from S that are admissible under P1

and inadmissible under P2. Formally, the function ∆ is defined as follows.
Definition 8. For policy specifications P1 and P2 and system specifications S

such that P1 Ã P2 and P1 →a S:

∆(P1, P2, S) def= {h ∈ H | (∃(p, n) ∈ [[S]] : h ∈ (p \ n))∧
(h ∈ (a1 \ a2)∨
h ∈ (u2 \ u1)∨
∃H1 ∈ C1 : ∃H2 ∈ C2 : H2 ⊆ H1 ∧ h ∈ (H1 \H2))}

where [[P1]](h) = (a1, u1, C1) and [[P2]](h) = (a2, u2, C2)

The singleton set {(∅,∆(P1, P2, S))} of interaction obligations can be understood
as the semantic representation of a sequence diagram that specifies as negative the
behavior that should be inadmissible after the refinement of the system specification.
We denote this representation by [[S]]∆(P1,P2,S), abbreviated by [[S]]∆ when the given
policy specifications are irrelevant or clear from the context.

For a system specification S such that P1 →a S and P1 Ã P2 hold, the following
represents a refined system specification in which the inadmissible behavior [[S]]∆ has
been removed: [[S]]∆ ] [[S]]. The operator ] takes two sets of interaction obligations
as operands and yields their inner union, formally defined as follows.

O1 ]O2
def= {(p1 ∪ p2, n1 ∪ n2) | (p1, n1) ∈ O1 ∧ (p2, n2) ∈ O2}

Since [[S]]∆ is a singleton set of interaction obligations, the result of [[S]]∆ ] [[S]]
is equal to the result of adding the set ∆(P1, P2, S) to the negative traces of each
interaction obligation of [[S]]. More formally,

[[S]]∆ ] [[S]] = {(p, n ∪∆(P1, P2, S)) | (p, n) ∈ [[S]]}

The result of this composition with inner union is furthermore a refinement of
[[S]] as expressed by the next theorem.

Theorem 5. For all interaction obligations (∅, n) and all sets of interaction
obligations O: O Ã {(∅, n)} ]O
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The refinement [[S]]∆] [[S]] of [[S]] then characterizes a system specification where
the adherence P1 →a S is preserved when the policy refinement P1 Ã P2 has been
conducted. The result is expressed by the following theorem.

Theorem 6. P1 →a S ∧ P1 Ã P2 ⇒ P2 →a ([[S]]∆ ] [[S]])
Notice that adherence as formalized in Def.4 is a relation between a policy spec-

ification and a system specification, whereas ([[S]]∆ ] [[S]]) in Theorem 6 denotes a set
of interaction obligations. The formulation of Theorem 6 is for sake of brevity and
readability.

The result of adherence preservation under the condition that the abstract system
specification is S is refined by the composition with [[S]]∆ can then be formulated as
follows.

[[S2]] = [[S1]]∆ ] [[S1]]
P1 →a S1 ∧ P1 Ã P2 ⇒ P2 →a S2

(5.2)

So far we have only given a general characterization of the refined system spec-
ification for which adherence is preserved by describing its semantics. In a practical
setting, the development process should, however, be supported by syntactical rules
that ensure the desired refinements.

The trace set ∆(P1, P2, S) which is derived as expressed in Def.8 characterizes
precisely the traces in S that are inadmissible after the policy refinement P1 Ã P2.
By identifying a sequence diagram d where these inadmissible traces are negative,
the diagram d can be syntactically composed with S to yield the desired result.
More precisely, if [[d]] = [[S]]∆ we have [[d alt S]] = [[S]]∆ ] [[S]], since the alt operator
is formalized by ] in STAIRS. Given the system specification S and the identified
sequence diagram d, the specification d alt S then denotes the desired refinement of
the system specification. Theorem 6 therefore means that in principle, the desired
system refinement can be conducted.

In the following we describe strategies for identifying such diagrams d, and we
identify rules for refinement of system specifications that guarantee adherence preser-
vation.

6 Adherence Preserving Refinement Rules

Our strategy is to utilize the modularity properties of policy adherence and policy
refinement as expressed by Theorem 1 and Theorem 2, respectively. These properties
allow the problem of preservation of adherence under policy refinement to be addressed
as a problem of preservation of adherence under policy rule refinement. Given a
refinement of a policy rule r to a policy rule r′, the challenge is to identify a sequence
diagram d that characterizes the strengthening of the policy rule under the refinement
step. Ideally, the identified sequence diagram d should capture exactly the set of
traces that characterizes the strengthening of the policy rule. In a practical setting
it may, however, be infeasible to identify the precise sequence diagram because of
limitations in the expressiveness of UML sequence diagrams. Since there exist sets
H ⊆ H of well formed traces for which there are no syntactical representations, it
may be that the traces representing the strengthening cannot be precisely specified.
The sequence diagram d is in the sequel therefore required to characterize at least the
strengthening of the policy rule, i.e. [[d]] must be a superset of the desired trace set.
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Since the removal of traces from the system specification never introduces a policy
breach, this requirement is sufficient for the results of adherence preservation.

The formula for strengthening a system specification S into a system specification
S′ with respect to an identified sequence diagram d is the following.

S′ = refuse(d par any) alt S

The par construct is for parallel composition and is formalized by the ‖ operator
which yields all the possible interleavings of is operands as result. The sequence
diagram any denotes the maximal sequence diagram the semantics of which is defined
by [[any]] = (H, ∅).2), The reason for the parallel composition of the sequence diagram
d and the maximal sequence diagram any in the formula is that it yields all the super-
traces of traces in [[d]], i.e. the traces that fulfill the behavior specified by d. This is
formally expressed by the following result: ∀H ⊆ H : H2 = (H ‖ H).

The fulfillment of the requirement that refuse(d par any) alt S is a refinement of
S is shown by the following theorem.

Theorem 7. For all sequence diagrams d and d′ such that [[d′]] is singleton:
d Ã (refuse(d′) alt d)

We now turn to the approach for adherence preserving refinement of each kind
of policy rule. A permission rule (pe, dt, db) is refined by a permission rule (pe, dt, d

′
b)

if [[d′b]] ⊆ [[db]]. By identifying sequence diagrams db1 and db2 such that [[db]] =
[[db1 alt db2]] and d′b = db1, the sequence diagram db2 represents the reduction of
the admissible behavior after the refinement. By refining a system specification S

for which adherence to (pe, dt, db) has been verified by characterizing traces fulfilling
dt seq db2 as negative, the adherence result that was established at the abstract level
is preserved.

In this case, the singleton rule set {(pe, dt, db1 alt db2)} is the abstract policy
specification and {(pe, dt, db1)} the refined policy specification. Preservation of ad-
herence under this approach can then be formulated as follows, where the premise
implies that S1 Ã S2 by Theorem 7.

S2 = refuse((dt seq db2) par any) alt S1

{(pe, dt, db1 alt db2)} →a S1 ⇒ {(pe, dt, db1)} →a S2
(6.3)

The policy rule retrieve of Fig. 2, for example, may be refined by removing the
downloading alternative transmit_d from the rule body. In that case adherence of
the system specification S of Fig. 3 is lost since transmit_d is positive. Refining S

by applying the identified rule, however, removes this alternative from the system
specification, and adherence is restored at the refined level.

Notice that for the sequence diagram db2 to characterize the exact strengthening
of the permission rule, the requirement [[db1]]∩ [[db2]] = ∅ must be fulfilled. The result
still holds if this requirement is not fulfilled, but implies that the removal of traces
under the refinement of the system specification is wider than required for adherence
to be ensured.

The same approach to adherence preservation is applicable to obligation rules,
as captured by the following.

2) The name any is adopted from Ref.[9] where it denotes the maximal MSC[8].
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S2 = refuse((dt seq db2) par any) alt S1

{(ob, dt, db1 alt db2)} →a S1 ⇒ {(ob, dt, db1)} →a S2
(6.4)

A prohibition rule may be refined by increasing the set of traces that represents
the prohibited behavior as specified by the rule body, i.e. a prohibition rule (pr, dt, db)
is refined by a prohibition rule (pr, dt, d

′
b) if [[d′b]] ⊇ [[db]]. By identifying sequence

diagrams db1 and db2 such that db = db1 and [[d′b]] = [[db1 alt db2]], the sequence diagram
db2 represents the reduction of the admissible behavior after the refinement. By
refining a system specification S for which adherence to (pr, dt, db) has been verified
by characterizing traces fulfilling dt seq db2 as negative, the adherence result that was
established at the abstract level is preserved.

S2 = refuse((dt seq db2) par any) alt S1

{(pr, dt, db1)} →a S1 ⇒ {(pr, dt, db1 alt db2)} →a S2
(6.5)

As for the rules for preservation of adherence under refinement of permissions and
obligations, the identification of the sequence diagram that characterizes the exact
strengthening requires that [[db1]] ∩ [[db2]] = ∅ holds. However, since db1 is already
characterized as inadmissible by S since adherence to {(pr, dt, db1)} has been verified,
the strengthening of S by removing the traces that fulfill dt seq db2 yields precisely
the desired refinement of S.

Returning to the policy example of Fig.2, the prohibition rule deny may e.g.
be refined by replacing the upload_d message with the composition of the messages
upload_d and transmit_d using alt. Adherence of the system specification S of Fig.3
to the policy specification is then lost, since S specifies only upload_d as negative
following login failure. By applying the identified rule the desired strengthening of S

is, however, imposed and adherence restored.
By properties of modularity, the approaches for adherence preserving refinement

of policy rules stated in (6.3), (6.4) and (6.5) can be combined into an approach for
adherence preserving refinement of policies. Assume, for example, that P1 →a S1 has
been verified at an abstract level and that P1 = {r1, . . . , rm} is refined following the
above described patterns. For each rule ri ∈ P1, let di denote the sequence diagram
characterizing the strengthening of ri. The desired strengthening of S1 into S2 such
that P2 →a S2 can then be obtained by the following formula.

S2 = refuse(d1 par any) alt . . . alt refuse(dm par any) alt S1

The modularity properties also allow the approach to be applied to a subset of the
policy specification. For a policy specification P1∪P such that P1∪P →a S1, we have
P1 →a S1 and P →a S1 by Theorem 1. By refining the rules of P1 into P2 following
the above pattern, the resulting policy specification P2 ∪ P is a refinement of P1 ∪ P

by Theorem 2. Since S1 Ã S2 for the derived system specification S2, and P →a S1,
we get P →a S2 by Theorem 4. By Theorem 1 we finally have P2 ∪ P →a S2.

7 Laudatio: The Relationship between STAIRS and Focus

The second author of this paper, Ketil Stølen, had the great pleasure of working
closely with Manfred Broy while being a member of Broy’s research group in Munich
from 1991 until 1996. The main achievement of their collaboration was the Focus
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book published in 2001[4]. The understanding and experience gained through the
years of research leading to the publication of this book has greatly influenced Stølen
and his collaboration partners in their work on the STAIRS method and its various
specializations[7,10,14,18,19]. As a tribute to Manfred Broy we will in the following
outline how the approach presented in this paper builds on the ideas and principles
embedded in Focus. We first draw the lines from STAIRS to Focus; then we look at
the relationship between the latter and the specific features of Deontic STAIRS.

7.1 The relationship to STAIRS

Focus is similar to STAIRS in that the semantics of a specification refers to
the messages that may be passed between system entities in order to fulfill certain
functionality. A further similarity is the support for abstraction, as well as system
development under stepwise and modular refinement. In Focus, a specification S2 is
a refinement of S1 if the specifications have the same syntactic interface, and—for
each input history—any output history of S2 is also an output history of S1. This
notion of refinement corresponds to refinement by reduction of underspecification in
STAIRS.

Focus and STAIRS are also similar in that a specification may be viewed as a
predicate on sequences. In Focus the sequences are input and output histories while
STAIRS operates on traces which basically are interleavings of input and output
histories.

From a semantic point of view the main difference between Focus and STAIRS
as described in Ref.[4] and Ref.[7], respectively, is that STAIRS is more general in the
following two respects.

STAIRS may express incomplete specifications. STAIRS has been developed
to support sequence diagrams. Sequence diagrams are special in the sense that
they are used to express incomplete specifications like example runs. Semanti-
cally, STAIRS therefore distinguishes between positive, negative and incomplete
behaviors. The positive ones are those behaviors the sequence diagram explic-
itly allows, i.e. the example runs, the negative ones are the runs the sequence
diagrams explicitly disallows, while the inconclusive behaviors are those the
sequence diagram does not describe. In Focus the behaviors captured by a
specification are positive, and those that are not are negative. Hence, Focus—
like most other specification languages—has been designed to capture complete
specifications.

STAIRS may express trace set properties. For system development under re-
finement, trace set properties may be problematic if there is no support for dis-
tinguishing between underspecification and inherent non-determinism. Refine-
ment typically reduces underspecification, and thereby also non-determinism. If
there is no support for distinguishing the non-determinism that can be reduced
from the non-determinism that should be preserved, we have no guarantee that
trace set properties are preserved. Therefore, although a trace set property
is verified at an abstract level, the property may not hold for a system ob-
tained by refinement from the abstract specification. In STAIRS, it is precisely
the support for capturing inherent non-determinism—syntactically by the xalt
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construct and semantically by the variation over interaction obligations—and
preserving inherent non-determinism under refinement that ensures adherence
preservation.

Focus offers support for capturing trace properties such as safety and liveness,
but there is not explicit support for capturing trace set properties and preserv-
ing these under refinement. This corresponds to STAIRS without the xalt con-
struct. Semantically, each interaction obligation corresponds to a single Focus
specification, and the semantics of a STAIRS specification, a set of interaction
obligations, corresponds to a set of Focus specifications.

7.2 The relationship to deontic STAIRS

In the setting of Deontic STAIRS and the problem of preservation of policy
adherence under refinement, the distinction between trace properties and trace set
properties is important[19]. Trace properties are properties that can be falsified on
single traces, and include safety and liveness properties. Trace set properties, on the
other hand, are properties that can be falsified on sets of traces only, and include
information flow properties. In order to show adherence of a system specification to
a Deontic STAIRS policy specification, we need to show adherence to permissions,
obligations and prohibitions. Adherence to the latter two is a trace property since
they can be falsified by a single trace, whereas adherence to permissions is a trace set
property.

8 Conclusion and Related Work

In this paper we have presented a method based on UML sequence diagram for
the integration of policy requirements into the overall system development process.
Both policy requirements and requirements to system design and functionality can be
specified at various levels of abstraction. For analysis of abstract specifications to be
meaningful, however, the results must be preserved under refinement; otherwise the
analysis must be conducted from scratch after each refinement step. The approach
presented in this paper allows policy adherence to be taken into account throughout
the development process by identifying the conditions under which adherence may
be preserved under refinement. The practical development setting is furthermore
supported by the identification of explicit development rules the application of which
guarantees adherence preservation. In the following we present and discuss some
related work.

Live sequence charts (LSCs)[5] extend message sequence charts[8] and are partic-
ularly directed towards specifying liveness properties. LSCs are related to Deontic
STAIRS by the support for specifying conditional scenarios using triggering precharts.
The distinction between universal diagrams that must be satisfied by all system runs
and existential diagrams that must be satisfied by at least one system run can further-
more be utilized to express obligations and permissions, whereas the expressiveness
of LSCs to capture forbidden scenarios can be utilized to express prohibitions. Ex-
istential diagrams can, however, not be specified as conditional scenarios. System
development using LSCs is intended to undergo a shift from existential to universal
diagrams, but a precise or formal notion of refinement is not provided. Modal se-



156 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

quence diagrams (MSDs)[6] are defined as a UML 2.0 profile, and are based on the
universal/existential distinction of LSCs. MSDs also allow the specification of condi-
tional scenarios, but the approach is not supported by a formal notion of refinement.

Triggered message sequence charts (TMSCs)[20] allow the specification of condi-
tional scenarios and are supported by a formal notion of refinement. The distinction
between the internal choice and delayed choice operators is related to the distinction
between alt and xalt in STAIRS, and could perhaps be utilized to capture policy ad-
herence. The paper stresses the importance of preserving properties such as safety
and liveness under refinement, but the problem of capturing and preserving inher-
ent non-determinism is not discussed. Support for the specification of negative or
prohibited behavior is furthermore not provided.

Model Driven Security is Ref.[2] a UML-based approach to the integration of
security models into the overall system development process. A UML-based language
called SecureUML is presented that supports the specification of access control re-
quirements. The paper addresses only access control in the form of permission rules,
and the specification of other security aspects is pointed out as a direction for future
work. Refinement is also not addressed, but the authors state that by considering
diagrams such as UML sequence diagrams and UML use case diagrams, the model-
ing of the system from different views and at different abstraction levels would be
supported.

As mentioned in the introduction, the problem of policy refinement is poorly
explored in the research on policy-based management. The investigation of policy
refinement has gained interest only recently[3], and the literature on the issue is still
scarce. One aspect of policy refinement as proposed in Ref.[12] is that of goal refine-
ment, where the set of low-level goals derived from a high-level goal intends to fulfill
the latter. Goal refinement has been adopted by approaches to policy refinement that
focus on the problem of deriving low-level policies the enforcement of which ensures
the fulfillment of the initial high-level goals[1,15]. Adherence to refined policy specifi-
cations therefore guarantees adherence to the abstract policy specifications, but the
problem of preservation of adherence under refinement is not discussed. The prob-
lem of integrating requirements from policy specifications with system specifications,
or understanding the relation between policy specifications and system specifications
where both may be represented at various abstraction levels, is also not addressed.
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