
Traceability Handling in Model-based Prediction of System Quality

Aida Omerovic∗† and Ketil Stølen∗†
∗SINTEF ICT, Pb. 124, 0314 Oslo, Norway

†University of Oslo, Department of Informatics, Pb. 1080, 0316 Oslo, Norway
Email: {aida.omerovic,ketil.stolen}@sintef.no

Abstract—Our earlier research indicated the feasibility of
the PREDIQT method for model-based prediction of impacts of
architectural design changes, on the different quality character-
istics of a system. The PREDIQT method develops and makes
use of a multi-layer model structure, called prediction models.
Usefulness of the prediction models requires a structured
documentation of both the relations between the prediction
models and the rationale and assumptions made during the
model development. This structured documentation is what we
refer to as trace-link information. In this paper, we propose a
traceability scheme for PREDIQT, and an implementation of
it in the form of a prototype tool which can be used to define,
document, search for and represent the trace-links needed.
The solution is applied on prediction models from an earlier
PREDIQT-based analysis of a real-life system. Based on a set
of success criteria, we argue that our traceability approach is
useful and practically scalable in the PREDIQT context.

Keywords-traceability; system quality prediction; modeling;
architectural design; change impact analysis; simulation.

I. INTRODUCTION

We have developed and tried out the PREDIQT method
[1] [2] aimed for predicting impacts of architectural design
changes on system quality characteristics and their trade-
offs. Examples of quality characteristics include availability,
scalability, security and reliability.

Important preconditions for model-based prediction are
correctness and proper usage of the prediction models. The
process of the PREDIQT method guides the development
and use of the prediction models, but the correctness of the
prediction models and the way they are applied are also
highly dependent on the creative effort of the analyst and
his/her helpers. In order to provide additional help and guid-
ance to the analyst, we propose in this paper a traceability
approach for documenting and retrieving the rationale and
assumptions made during the model development, as well
as the dependencies between the elements of the prediction
models.

The approach is defined by a traceability scheme, which
is basically a feature diagram specifying capabilities of the
solution and a meta-model for the trace-link information. A
prototype tool is implemented in the form of a relational
database with user interfaces which can be employed to
define, document, search for and represent the trace-links
needed. The solution is illustrated on prediction models from

an earlier PREDIQT-based analysis conducted on a real-life
system [3].

The paper is organized as follows: Section II provides
background on traceability. The challenge of traceability
handling in the context of the PREDIQT method is char-
acterized in Section III. Our traceability handling approach
is presented in Section IV. Section V illustrates the approach
on an example. Section VI argues for completeness and
practicability of the approach, by evaluating it with respect
to the success criteria. Section VII substantiates why our
approach, given the success criteria outlined in Section III,
is preferred among the alternative traceability approaches.
The concluding remarks and future work are presented in
Section VIII.

A full technical report [4] is available and includes:
1) an outline of the PREDIQT method, 2) guidelines for
application of the prediction models which the success
criteria for our traceability approach are deduced from, and
3) further details on traceability in PREDIQT.

II. BACKGROUND ON TRACEABILITY

IEEE [5] provides two definitions of traceability:
1) Traceability is the degree to which a relationship

can be established between two or more products of
the development process, especially products having
a predecessor-successor or master-subordinate rela-
tionship to one another; for example, the degree to
which the requirements and design of a given software
component match.

2) Traceability is the degree to which each element in
a software development product establishes its reason
for existing.

Traceability research and practice are most established in
fields such as requirements engineering and model-driven
engineering (MDE). Knethen and Paech [6] argue: “De-
pendency analysis approaches provide a fine-grained impact
analysis but can not be applied to determine the impact
of a required change on the overall software system. An
imprecise impact analysis results in an imprecise estimate of
costs and increases the effort that is necessary to implement
a required change because precise relationships have to be
identified during changing. This is cost intensive and error
prone because analyzing the software documents requires
detailed understanding of the software documents and the

79

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

relationships between them.” Aizenbud-Reshef et al. [7]
furthermore state: “The extent of traceability practice is
viewed as a measure of system quality and process maturity
and is mandated by many standards” and “With complete
traceability, more accurate costs and schedules of changes
can be determined, rather than depending on the programmer
to know all the areas that will be affected by these changes”.

IEEE [5] defines a trace as “A relationship between two
or more products of the development process.” According to
the OED [8], however, a trace is defined more generally as
a “(possibly) non-material indication or evidence showing
what has existed or happened”. As argued by [9]: “If
a developer works on an artifact, he leaves traces. The
software configuration management system records who has
worked on the artifact, when that person has worked on it,
and some systems also record which parts of the artifacts
have been changed. But beyond this basic information, the
changes themselves also reflect the developer’s thoughts and
ideas, the thoughts and ideas of other stakeholders he may
have talked to, information contained in other artifacts, and
the transformation process that produced the artifact out of
these inputs. These influences can also be considered as
traces, even though they are usually not recorded by software
configuration management systems.”

A traceability link is a relation that is used to interrelate
artifacts (e.g., by causality, content, etc.) [9]. In the context
of requirements traceability, [9] argues that “a trace can in
part be documented as a set of meta-data of an artifact (such
as creation and modification dates, creator, modifier, and
version history), and in part as relationships documenting
the influence of a set of stakeholders and artifacts on an
artifact. Particularly those relationships are a vital concept
of traceability, and they are often referred to as traceability
links. Traceability links document the various dependencies,
influences, causalities, etc. that exist between the artifacts. A
traceability link can be unidirectional (such as depends-on)
or bidirectional (such as alternative-for). The direction of a
link, however, only serves as an indication of order in time or
causality. It does not constrain its (technical) navigability, so
traceability links can always be followed in both directions”.

In addition to the different definitions, there is no com-
monly agreed basic classification [9]. A taxonomy of the
main concepts within traceability is suggested by [6].

An overview of the current state of traceability research
and practice in requirements engineering and model-driven
development is provided by [9], based on an extensive
literature survey. Another survey [10] discusses the state-of-
the-art in traceability approaches in MDE and assesses them
with respect to five evaluation criteria: representation, map-
ping, scalability, change impact analysis and tool support.
Moreover, Spanoudakis and Zisman [11] present a roadmap
of research and practices related to software traceability.

Traces can exist between both model- and non-model
artifacts. The means and measures applied for obtaining

traceability are defined by so-called traceability schemes. A
traceability scheme is driven by the planned use of the traces.
The traceability scheme determines for which artifacts and
up to which level of detail traces can be recorded [9]. A
traceability scheme thus defines the constraints needed to
guide the recording of traces, and answers the core ques-
tions: what, who, where, how, when and why. Additionally,
there is tacit knowledge (such as why), which is difficult to
capture and to document. A traceability scheme helps in this
process of recording traces and making them persistent.

According to Wieringa [12], representations and visual-
izations of traces can be categorized into matrices, cross-
references, and graph-based representations. As elaborated
by Wieringa, the links, the content of the one artifact,
and other information associated with a cross reference, is
usually displayed at the same time. This is however not the
case with traceability matrices. So, compared to traceability
matrices, the user is (in the case of cross-references) shown
more local information at the cost of being shown fewer
(global) links. As models are the central element in MDE,
graph-based representations are the norm. A graph can be
transformed to a cross-reference. Regarding the notation,
there is, however, no common agreement or standard, mostly
because the variety and informality of different artifacts is
not suitable for a simple, yet precise notation.

Traceability activities are generally not dependent on any
particular software process model. Knethen and Paech [6]
argue that the existing traceability approaches do not give
much process support. They specify four steps of traceability
process: 1) define entities and relationships, 2) capture
traces, 3) extract and represent traces, and 4) maintain traces.
Similarly, Winkler and Pilgrim [9] state that traceability and
its supporting activities are currently not standardized. They
classify the activities when working with traces into: 1)
planning for traceability, 2) recording traces, 3) using traces,
and 4) maintaining traces.

Trace models are usually stored as separate models, and
links to the elements are (technically) unidirectional in
order to keep the connected models or artifacts independent.
Alternatively, models can contain the trace-links themselves
and links can be defined as bidirectional. While embedded
trace-links pollute the models, navigation is much easier
[9]. Thus, we distinguish between external and internal
storage, respectively. Anquetil at al. [13] argue: “Keeping
link information separated from the artifacts is clearly better;
however it needs to identify uniquely each artifact, even
fined-grained artifacts. Much of the recent research has
focused on finding means to automate the creation and
maintenance of trace information. Text mining, information
retrieval and analysis of trace links techniques have been
successfully applied. An important challenge is to maintain
links consistency while artifacts are evolving. In this case,
the main difficulty comes from the manually created links,
but scalability of automatic solution is also an issue.”

80

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

Various tools are used to set and maintain traces. Surveys
of the tools available are provided by [6], [9], [11] and
[7]. Bohner and Arnold [14] found that the granularity of
documentation entities managed by current traceability tools
is typically somewhat coarse for an accurate impact analysis.

III. THE CHALLENGE

Three interrelated sets of models are developed during
the process of the PREDIQT method: Design Model which
specifies system architecture, Quality Model which specifies
the system quality notions, and Dependency Views (DVs)
which represent the interrelationship between the system
quality and the architectural design. The PREDIQT process
consists of three overall phases: Target modeling, Verifi-
cation of prediction models, and Application of prediction
models.

Figure 1 provides an overview of the elements of the
prediction models, expressed as a UML [15] class diagram.
A Quality Model is a set of tree-like structures which clearly
specify the system-relevant quality notions, by defining and
decomposing the meaning of the system-relevant quality ter-
minology. Each tree is dedicated to a target system-relevant
quality characteristic. Each quality characteristic may be
decomposed into quality sub-characteristics, which in turn
may be decomposed into a set of quality indicators. As in-
dicated by the relationship of type aggregation, specific sub-
characteristics and indicators can appear in several Quality
Model trees dedicated to the different quality characteristics.
Each element of a Quality Model is assigned a quantitative
normalized metric and an interpretation (qualitative meaning
of the element), both specific for the target system. A
Design Model represents the relevant aspects of the system
architecture, such as for example process, dataflow, structure
and rules.

A DV is a weighted dependency tree dedicated to a
specific quality characteristic defined through the Quality
Model. As indicated by the attributes of the Class Node, the
nodes of a DV are assigned a name and a QCF (Quality
Characteristic Fulfillment). A QCF is value of the degree
of fulfillment of the quality characteristic, with respect to
what is represented by the node. The degree of fulfillment is
defined by the metric (of the quality characteristic) provided
in the Quality Model. Thus, a complete prediction model has
as many DVs as the quality characteristics defined in the
Quality Model. Additionally, as indicated by the Semantic
dependency relationship, semantics of both the structure and
the weights of a DV are given by the definitions of the
quality characteristics, as specified in the Quality Model.
A DV node may be based on a Design Model element,
as indicated by the Based on dependency relationship. As
indicated by the self-reference on the Node class, one node
may be decomposed into children nodes. Directed arcs
express dependency with respect to quality characteristic by
relating each parent node to its immediate children nodes,

thus forming a tree structure. Each arc in a DV is assigned
an EI (Estimated Impact), which is a normalized value of
degree of dependence of a parent node, on the immediate
child node. The values on the nodes and the arcs are referred
to as parameter estimates. We distinguish between prior and
inferred parameter estimates. The former ones are, in the
form of empirical input, provided on leaf nodes and all arcs,
while the latter ones are deduced using the DV propagation
model for PREDIQT [3].

The intended application of the prediction models does
not assume implementation of change on the target system,
but only simulation of effects of the independent architec-
tural design changes quality of the system (in its currently
modelled state). Since the simulation is only performed
on the target system in its current state and the changes
are simulated independently (rather than incrementally),
versioning of the prediction models in not necessary. Hence,
maintenance of both prediction models and trace information
is beyond the scope of PREDIQT.

Trace-link information can be overly detailed and ex-
tensive while the solution needed in a PREDIQT context
has to be applicable in a practical real-life setting within
the limited resources allocated for a PREDIQT-based anal-
ysis. Therefore, the traceability approach should provide
sufficient breadth and accuracy for documenting, retrieving
and representing of the trace-links, while at the same time
being practically applicable in terms of comprehensibility
and scalability. The right balance between the completeness
and accuracy of the trace information on the one side,
and practical usability of the approach on the other side,
is what characterizes the main challenge in proposing the
appropriate solution for traceability handling in PREDIQT.
Therefore, the trace-link creation efforts have to be concen-
trated on the traces necessary during the application of the
prediction models.

It is, as argued by [9], an open issue to match trace usage
and traceability schemes, and to provide guidance to limit
and fit traceability schemes in a such way that they match a
projects required usage scenarios for traces. One of the most
urgent questions is which requirements a single scenario
imposes on the other activities (in particular planning and
recording) in the traceability process.

Moreover, it is argued by Aizenbud-Reshef et al. [7] that
the lack of guidance as to what link information should
be produced and the fact that those who use traceability
are commonly not those producing it, also diminishes the
motivation of those who create and maintain traceability in-
formation. In order to avoid this trap, we used the PREDIQT
guidelines [4] for the analyst as a starting point, for deriving
the specific needs for traceability support. The guidelines are
based on the authors’ experiences from industrial trials of
PREDIQT [3] [2]. As such, the guidelines are not exhaustive
but serve as an aid towards a more structured process of
applying the prediction models and accommodating the trace

81

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

Dependency
View

Design Model

StructureDataflow Rule

Quality
characteristic

Quality model

Element

Prediction
model

Based on

1 1 1

1..*

1

1..*

11 1 1

-name: String
-QCF: Float
-(PropagationFunction)

Node

Quality
Sub-characteristic

Quality Indicator

Interpretation

Metric

-EI:NormalizedFloat

Dependency 1*

1 1

Process

*

*

Semantic

1

*
Decomposed

into

Figure 1. An overview of the elements of the prediction models, expressed as a UML class diagram

information during the model development, based on the
needs of the “Application of prediction models”-phase.

The specific needs for traceability support in PREDIQT
are summarized below:

1) There is need for the following kinds of trace-links:
• links between the Design Model elements
• links from the Design Model elements to DV

elements
• links from DV elements to Quality Model ele-

ments (i.e. traces to the relevant quality indicators
and rationale for the prior estimates)

• links to external information sources (documents,
measurement, domain experts) used during the
development of DV structure and estimation of
the parameters

• links to rationale and assumptions for: Design
Model elements, the semantics of the DV ele-
ments, as well as structure and prior parameter
estimates of the DVs

2) The traceability approach should have facilities for
both searching with model types and model elements
as input parameters, as well as for reporting linked
elements and the link properties

3) The traceability approach should be flexible with re-
spect to granularity of trace information

4) The traceability approach should be practically appli-
cable on real-life applications of PREDIQT

These needs are in the sequel referred to as the success
criteria for the traceability approach in PREDIQT.

IV. OUR SOLUTION

This section starts by presenting our traceability scheme
for PREDIQT. Then, a prototype tool for trace-link man-
agement, implementing the needs specified through the
traceability scheme, is presented.

A. Traceability scheme

We propose a traceability scheme in the form of a meta-
model for trace-link information and a feature diagram
for capabilities of the solution. The types of the trace-
links and the types of the traceable elements are directly
extracted from Success Criterion 1 and represented through

Element

Rationale for Trace Link

Trace Link

Design Model
Element

Dependency
View Element

Quality Model
Element

External
Information

Source

Rationale and
Assumptions

Design Model Element
to Design Model

Element

Design Model Element
to Dependency View

Element

Dependency View
Element to Quality

Model Element

Design Model Element to
Rationale and Assumptions

Structure, Parameter or
Semantics of Dependency View
Element documented through
Rationale and Assumptions

Structure or Parameter of
Dependency View Element

documented through External
Information Source

Target

Origin

*

*

Target

Origin

*

*

Origin *

Target *

Origin

Target

*

*

Origin

Target

*

*

Origin

Target

*

*

Origin

Target

*

*

Figure 2. A meta model for trace-link information, expressed as a UML
class diagram

a meta-model shown by Figure 2. The Element abstract
class represents a generalization of a traceable element. The
Element abstract class is specialized into the five kinds of
traceable elements: Design Model Element, DV Element,
Quality Model Element, External Information Source, and
Rationale and Assumptions. Similarly, the Trace Link ab-
stract class represents a generalization of a trace-link and
may be assigned a rationale for the trace-link. The Trace
Link abstract class is specialized into the six kinds of trace-
links.

82

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

Pairs of certain kinds of traceable elements form binary
relations in the form of unidirectional trace-links. Such rela-
tions are represented by the UML-specific notations called
association classes (a class connected by a dotted line to a
link which connects two classes). For example, trace-links of
type Design Model Element to Design Model Element may
be formed from a Design Model Element to a Dependency
View Element. The direction of the link is annotated by
the origin (the traceable element that the trace-link goes
from) and the target (the traceable element that the trace-link
goes to). Since only distinct pairs (single instances) of the
traceable elements (of the kinds involved in the respective
trace-links defined in Figure 2) can be involved in the
associated specific kinds of trace-links, uniqueness (property
of UML association classes) is present in the defined trace-
links. Due to the binary relations (arity of value 2) in the
defined trace-links between the traceable elements, only two
elements can be involved in any trace-link. Furthermore,
multiplicity of all the traceable elements involved in the
trace-links defined is of type “many”, since an element can
participate in multiple associations (given they are defined
by the meta-model and unique).

The main capabilities needed are represented through a
feature diagram [9] shown by Figure 3. Storage of trace-links
may be internal or external, relative to the prediction models.
A traceable element may be of type prediction model
element (see Figure 1) or non-model element. Reporting
and searching functionality has to be supported. Trace-link
info has to include link direction, link meta-data (e.g. date,
creator, strength) and cardinality (note that all links are
binary, but a single element can be origin or target for more
than one trace-link). Typing at the origin and the target ends
of a trace-link as well as documenting rationale for trace-
link, are optional.

B. Prototype traceability tool

We have developed a prototype tool in the form of a
database application with user interfaces, on the top of MS
Access [16]. The prototype tool includes a structure of tables
for organizing the trace information, queries for retrieval of
the trace info, a menu for managing work flow, forms for
populating trace-link information, and facilities for reporting
trace-links. A screen shot of the entity-relationship (ER)
diagram of the trace-link database is shown by Figure 4.
The ER diagram is normalized, which means that the data
are organized with minimal needs for repeating the entries
in the tables. Consistency checks are performed on the
referenced fields. The data structure itself (represented by the
ER diagram) does not cover all the constraints imposed by
the meta-model (shown by Figure 2). However, constraints
on queries and forms as well as macros can be added in order
to fully implement the logic, such as for example which
element types can be related to which trace-link types.

The five traceable element types defined by Figure 2

and their properties (name of creator, date, assumption
and comment), are listed in Table TraceableElementType.
Similarly, the six trace-link types defined by Figure 2 and
their properties (scope, date, creator and comment), are listed
in Table TraceLinkType. Table TraceableElement specifies
the concrete instances of the traceable elements, and assigns
properties (such as the pre-defined element type, hyperlink,
creator, date, etc.) to each one of them. Since primary
key attribute in Table TraceableElementType is foreign key
in Table TraceableElement, multiplicity between the two
respective tables is one-to-many.

Most of the properties are optional, and deduced based
on: 1) the core questions to be answered by traceability
scheme [9] and 2) the traceability needs for using guidelines
for application of prediction models (specified in [4]). The
three Tables TargetElements, OriginElements and TraceLink
together specify the concrete instances of trace-links. Each
link is binary, and directed from a concrete pre-defined
traceable element – the origin element specified in Table
OriginElements, to a concrete pre-defined traceable element
– the target element specified in Table TargetElements. The
trace-link itself (between the origin and the target element)
and its properties (such as pre-defined trace-link type) are
specified in Table TraceLink. Attribute TraceLinkName (as-
sociated with a unique TraceLinkId value) connects the three
tables TraceLink, OriginElements and TargetElements when
representing a single trace-link instance, thus forming a
cross-product when relating the three tables. The MS Access
environment performs reference checks on the cross prod-
ucts, as well as on the values of the foreign key attributes.
Target elements and origin elements participating in a trace-
link, are instances of traceable elements defined in Table
TraceableElement. They are connected through the Attribute
ElementId (displayed as ElementName in the tables where it
has the role of foreign key). Thus, multiplicity between Table
TraceableElement and Table TargetElements, as well as
between Table TraceableElement and Table OriginElements,
is one-to-many. Similarly, since primary key attribute in
Table TraceLinkType is foreign key in Table TraceLink,
multiplicity between the two respective tables is one-to-
many.

A screen shot of the start menu is shown by Figure 5.
The sequence of the buttons represents a typical sequence
of actions of an end-user (the analyst), in the context
of defining, documenting and using the trace-links. The
basic definition of the types of the traceable elements and
the trace-links are provided first. Then, concrete traceable
elements are documented, before defining specific instances
of the trace-links and their associated specific origin and
target elements, involved in the binary trace-link relations.
Finally, reports can be obtained, based on search parameters
such as for example model types, model elements, or trace-
link types.

83

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

Tracing in PREDIQT

Traceable element

Link meta-data

Typed Untyped

Link direction Cardinality 0..*Typing

Trace-link infoStorage

Internal External Non-model elementModel element

Reporting Searching

Legend
mandatory
optional

alternative

Rationale AssumptionsExternal information source

Rationale for trace link

Figure 3. Main capabilities of the traceability approach

Figure 4. Entity-relationship diagram of the trace-link database of the prototype traceability tool

Figure 5. A screen shot of the start menu of the prototype traceability
tool

V. APPLYING THE SOLUTION ON AN EXAMPLE

This section exemplifies the application of our solution for
managing traces in the context of prediction models earlier
developed and applied during a PREDIQT-based analysis [3]
conducted on a real-life system.

The trace-link information was documented in the proto-
type tool, in relation to the model development. The trace-
links were applied during change application, according to
the guidelines for application of prediction models (specified
in [4]). We present the experiences obtained, while the
process of documentation of the trace-links is beyond the
scope of this paper.

The prediction models involved are the ones related to
“Split signature verification component into two redundant
components, with load balancing”, corresponding to Change
1 in [3]. Three Design Model diagrams were affected, and
one, two and one model element on each, respectively.
We have tried out the prototype traceability tool on the
Design Model diagrams involved, as well as Availability
(which was one of the three quality characteristics analyzed)
related Quality Model diagrams and DV. Documentation
of the trace-links involved within the Availability quality
characteristic (as defined by the Quality Model) scope, took
approximately three hours. Most of the time was spent on
actually typing the names of the traceable elements and the
trace-links.

18 instances of traceable elements were registered in the
database during the trial: seven Quality Model elements,
four DV elements, four Design Model elements and three
elements of type “Rationale and Assumptions”. 12 trace-
links were recorded: three trace-links of type “Design Model
Element to Design Model Element”, three trace-links of type
“Design Model Element to DV Element”, one trace-link of
type “Design Model Element to Rationale and Assump-
tions”, three trace-links of type “DV Element to Quality
Model Element”, and two trace-links of type “Structure,
Parameter or Semantics of DV Element Documented through
Rationale and Assumptions”, were documented.

84

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

Figure 6. A screen shot of an extract of a trace-link report from the
prototype traceability tool

An extract of a screen shot of a trace-link report (obtained
from the prototype tool) is shown by Figure 6. The report
included: three out of three needed (i.e., actually existing,
regardless if they are recorded in the trace-link database)
“Design Model Element to Design Model Element” links,
three out of four needed “Design Model Element to DV
Element” links, one out of one needed “Design Model
Element to Rationale and Assumptions” link, three out
of six needed “DV Element to Quality Model Element”
links and one out of one needed “Structure, Parameter or
Semantics of DV Element Documented through Rationale
and Assumptions” link.

Best effort was made to document the appropriate trace-
links without taking into consideration any knowledge of
exactly which of them would be used when applying the
change. The use of the trace-links along with the application
of change on the prediction models took totally 20 minutes
and resulted in the same predictions (change propagation
paths and values of QCF estimates on the Availability DV),
as in the original case study [3]. Without the guidelines
and the trace-link report, the change application would have
taken approximately double time for the same user.

All documented trace-links were relevant and used dur-
ing the application of the change, and about 73% of the
relevant trace-links could be retrieved from the prototype
tool. Considering however the importance and the role of
the retrievable trace-links, the percentage should increase
considerably.

Although hyperlinks are included as meta-data in the
user interface for element registration, an improved solu-
tion should include interfaces for automatic import of the
element names from the prediction models, as well as user
interfaces for easy (graphical) trace-link generations between
the existing elements. This would also aid verification of the
element names.

VI. WHY OUR SOLUTION IS A GOOD ONE

This section argues that the approach presented above
fulfills the success criteria specified in Section III.

A. Success Criterion 1

The traceability scheme and the prototype tool capture
the kinds of trace-links and traceable elements, specified
in the Success Criterion 1. The types of trace-links and
traceable elements as well as their properties, are specified
in dedicated tables in the database of the prototype tool.
This allows constraining the types of the trace-links and the
types of the traceable elements to only the ones defined, or
extending their number or definitions, if needed. The trace-
links in the prototype tool are binary and unidirectional, as
required by the traceability scheme. Macros and constraints
can be added in the tool, to implement any additional logic
regarding trace-links, traceable elements, or their respective
type definitions and relations. The data properties (e.g. date,
hyperlink or creator) required by the user interface, allow
full traceability of the data registered in the database of the
prototype tool.

B. Success Criterion 2

Searching based on user input, selectable values from a
list of pre-defined parameters, or comparison of one or more
database fields, are relatively simple and fully supported
based on queries in MS Access. Customized reports can
be produced with results of any query and show any infor-
mation registered in the database. The report, an extract of
which is presented in Section V, is based on a query of all
documented trace-links and the related elements.

C. Success Criterion 3

The text-based fields for documenting the concrete in-
stances of the traceable elements and the trace-links, allow
level of detail selectable by the user. Only a subset of fields
is mandatory for providing the necessary trace-link data. The
optional fields in the tables can be used for providing addi-
tional information such as for example rationale, comments,
links to external information sources, attachments, strength
or dependency. There are no restrictions as to what can be
considered as a traceable element, as long at it belongs to one
of the element types defined by Figure 2. Similarly, there are
no restrictions as to what can be considered as a trace-link,
as long at it belongs to one of the trace-link types defined
by Figure 2. The amount of information provided regarding
the naming and the meta-data, are selectable by the user.

D. Success Criterion 4

Given the realism of the prediction models involved in
the example, the size and complexity of the target system
they address, the representativeness of the change applied
on them, the simplicity of the prototype tool with respect
to both the user interfaces and the notions involved, as

85

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

well as the time spent on documenting the trace-links and
using them, the application of the approach presented in
Section V indicates the applicability of our solution on real-
life applications of PREDIQT, with limited resources and by
an average user (in the role of the analyst).

The predictions (change propagation paths and values of
QCF estimates) we obtained during the application of our
solution on the example were same as the ones from the
original case study [3] (performed in year 2008) which
the models stem from. Although the same analyst has
been involved in both, the results suggest that other users
should, by following PREDIQT guidelines and applying the
prototype traceability tool, obtain similar results.

The time spent is to some degree individual and depends
on the understanding of the target system, the models and
the PREDIQT method. It is unknown if the predictions
would have been the same (as in the original case study)
for another user. We do however consider the models and
the change applied during the application of the solution, to
be representative due to their origins from a major real-life
system. Still, practical applicability of our solution will be
subject to future empirical evaluations.

VII. WHY OTHER APPROACHES ARE NOT BETTER IN
THIS CONTEXT

This section evaluates the feasibility of other traceability
approaches in the PREDIQT context. Based on our liter-
ature review and the results of the evaluation by Galvao
and Goknil [10], we argue why the alternative traceability
approaches do not perform sufficiently on one or more of
the success criteria specified in Section III.

Almeida et al. [17] propose an approach aimed at simpli-
fying the management of relationships between requirements
and various design artifacts. A framework which serves as
a basis for tracing requirements, assessing the quality of
model transformation specifications, meta-models, models
and realizations, is proposed. They use traceability cross-
tables for representing relationships between application
requirements and models. Cross-tables are also applied for
considering different model granularities and identification
of conforming transformation specifications. The approach
does not provide sufficient support for intra-model mapping,
thus failing on our Success Criterion 1. Moreover, possibility
of representing the various types of trace-links and traceable
elements is unclear, although different visualizations on a
cross-table are suggested. Tool support is not available,
which limits applicability of the approach in a practical
setting. Searching and reporting facilities are not available.
Thus, it fails on our Success Criteria 1, 2 and 4.

Event-based Traceability (EBT) is another requirements-
driven traceability approach aimed at automating trace-link
generation and maintenance. Cleland-Huang, Chang and
Christensen [18] present a study which uses EBT for manag-
ing evolutionary change. They link requirements and other

traceable elements, such as design models, through publish-
subscribe relationships. As outlined by [10], “Instead of
establishing direct and tight coupled links between require-
ments and dependent entities, links are established through
an event service. First, all artefacts are registered to the
event server by their subscriber manager. The requirements
manager uses its event recognition algorithm to handle the
updates in the requirements document and to publish these
changes as event to the event server. The event server man-
ages some links between the requirement and its dependent
artefacts by using some information retrieval algorithms.”
The notification of events carries structural and semantic
information concerning a change context. Scalability in a
practical setting is the main issue, due to performance
limitation of the EBT server [10]. Moreover, the approach
does not provide sufficient support for intra-model mapping.
Thus, it fails on our Success Criteria 1 and 4.

Cleland-Huang et al. [19] propose Goal Centric Trace-
ability (GCT) approach for managing the impact of change
upon the non-functional requirements of a software system.
Softgoal Interdependency Graph (SIG) is used to model
non-functional requirements and their dependencies. Addi-
tionally, a traceability matrix is constructed to relate SIG
elements to classes. The main weakness of the approach is
the limited tool support, which requires manual work. This
limits both scalability in a practical setting and searching
support (thus failing on our Success Criteria 4 and 2,
respectively). It is unclear to what degree granularity of the
approach would suffice the needs of PREDIQT.

Cleland-Huang and Schmelzer [20] propose another
requirements-driven traceability approach that builds on
EBT. The approach involves a different process for dynami-
cally tracing non-functional requirements to design patterns.
Although more fine grained than EBT, there is no evidence
that the method can be applied with success in a practical
real-life setting (required through our Success Criterion 4).
Searching and reporting facilities (as required through our
Success Criterion 2) are not provided.

Many traceability approaches address trace maintenance.
Cleland-Huang, Chang and Ge [21] identify the various
change events that occur during requirements evolution and
describe an algorithm to support their automated recognition
through the monitoring of more primitive actions made by a
user upon a requirements set. Mäder and Gotel [22] propose
an approach to recognize changes to structural UML models
that impact existing traceability relations and, based on that
knowledge, provide a mix of automated and semi-automated
strategies to update the relations. Both approaches focus on
trace maintenance, which is as argued in Section III, not
among the traceability needs in PREDIQT.

Ramesh and Jarke [23] propose another requirements-
driven traceability approach where reference models are
used to represent different levels of traceability information
and links. The granularity of the representation of traces

86

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

depends on the expectations of the stakeholders [10]. The
reference models can be implemented in distinct ways when
managing the traceability information. As reported by [10],
“The reference models may be scalable due to their possible
use for traceability activities in different complexity levels.
Therefore, it is unclear whether this approach lacks scala-
bility with respect to tool support for large-scale projects
or not.” In PREDIQT context, the reference models are
too broad, their focus is on requirements traceability, and
tool support is not sufficient with respect to searching and
reporting (our Success Criterion 2).

We could however have tried to use parts of the reference
models by Ramesh and Jarke [23] and provide tool support
based on them. This is done by [24] in the context of
product and service families. The authors discuss a knowl-
edge management system, which is based on the traceability
framework by Ramesh and Jarke [23]. The system captures
the various design decisions associated with service fam-
ily development. The system also traces commonality and
variability in customer requirements to their corresponding
design artifacts. The tool support has graphical interfaces
for documenting decisions. The trace and design decision
capture is illustrated using sample scenarios from a case
study. We have however not been able to obtain the tool, in
order to try it out in our context.

A modeling approach by Egyed [25] represents trace-
ability information in a graph structure called a footprint
graph. Generated traces can relate model elements with other
models, test scenarios or classes [10]. Galvao and Goknil
[10] report on promising scalability of the approach. It is
however unclear to what degree the tool support fulfills our
success criterion regarding searching and reporting, since
semantic information on trace-links and traceable elements
is limited.

Aizenbud-Reshef et al. [26] outline an operational se-
mantics of traceability relationships that capture and rep-
resent traceability information by using a set of semantic
properties, composed of events, conditions and actions [10].
Galvao and Goknil [10] state: the approach does not provide
sufficient support for intra-model mapping; a practical appli-
cation of the approach is not presented; tool support is not
provided; however, it may be scalable since it is associated
with the UML. Hence, it fails on our Success Criteria 1 and
2.

Some approaches [27] [28] [29] that use model trans-
formations can be considered as a mechanism to generate
trace-links. Tool support with transformation functionalities
is in focus, while empirical evidence of comprehensibility
of the approaches in a practical setting, is missing. The
publications we have retrieved do not report sufficiently
on whether these approaches would offer the searching
facilities, the granularity of trace information, and practical
applicability needed for use in PREDIQT context (that is,
by an analyst who is not an expert in the tools provided).

VIII. CONCLUSION AND FUTURE WORK

Our earlier research indicates the feasibility of the
PREDIQT method for model-based prediction of impacts
of architectural design changes on system quality. The
PREDIQT method produces and applies a multi-layer model
structure, called prediction models, which represent system
design, system quality and the interrelationship between the
two.

Based on the success criteria for a traceability approach in
the PREDIQT context, we put forward a traceability scheme.
Based on this, a prototype tool which can be used to define,
document, search for and represent the trace-links needed,
is developed. We have argued that our solution offers a
useful and practically applicable support for traceability in
the PREDIQT context.

Performing an analysis of factors such as cost, risk, and
benefit and following the paradigm of value-based software-
engineering, would be relevant in order to stress the effort
on the important trace-links. As argued by [9], if the value-
based paradigm is applied to traceability, cost, benefit, and
risk will have to be determined separately for each trace
according to if, when, and to what level of detail it will be
needed later. This leads to more important artifacts having
higher-quality traceability. There is a trade-off between the
semantically accurate techniques on the one hand and cost-
efficient but less detailed approaches on the other hand.
Finding an optimal compromise is still a research challenge.
Our solution proposes a feasible approach, while finding the
optimal one is subject to further research.

Further empirical evaluation of our solution is also nec-
essary to test its feasibility on different analysts as well
as its practical applicability in the various domains which
PREDIQT is applied on. Future work should also include
standard interfaces and procedures for updating the traceable
elements from the prediction models into our prototype
traceability tool. As model application phase of PREDIQT
dictates which trace-link information is needed and how it
should be used, the current PREDIQT guidelines focus on
the application of the prediction models. However, since the
group of recorders and the group of users of traces may be
distinct, structured guidelines for recording the traces during
the model development should also be developed as a part
of the future work.

ACKNOWLEDGMENT

This work has been conducted as a part of the DIGIT
(180052/S10) project funded by the Research Council of
Norway, as well as a part of the NESSoS network of
excellence funded by the European Commission within the
7th Framework Programme.

REFERENCES

[1] A. Omerovic, A. Andresen, H. Grindheim, P. Myrseth,
A. Refsdal, K. Stølen, and J. Ølnes, “A Feasibility Study

87

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

in Model Based Prediction of Impact of Changes on System
Quality,” in International Symposium on Engineering Secure
Software and Systems, vol. LNCS 5965. Springer, 2010, pp.
231–240.

[2] A. Omerovic, B. Solhaug, and K. Stølen, “Evaluation of
Experiences from Applying the PREDIQT Method in an In-
dustrial Case Study,” in Fifth IEEE International Conference
on Secure Software Integration and Reliability Improvement.
IEEE, 2011.

[3] A. Omerovic, A. Andresen, H. Grindheim, P. Myrseth,
A. Refsdal, K. Stølen, and J. Ølnes, “A Feasibility Study
in Model Based Prediction of Impact of Changes on System
Quality,” SINTEF, Tech. Rep. A13339, 2010.

[4] A. Omerovic and K. Stølen, “Traceability Handling in Model-
based Prediction of System Quality,” SINTEF, Tech. Rep.
A19348, 2011.

[5] “Standard Glossary of Software Engineering Terminology:
IEEE Std.610. 12-1990,” 1990.

[6] A. Knethen and B. Paech, “A Survey on Tracing Approaches
in Practice and Research,” Frauenhofer IESE, Tech. Rep.
095.01/E, 2002.

[7] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-
Gafni, “Model Traceability,” IBM Syst. J., vol. 45, no. 3, pp.
515–526, 2006.

[8] J. Simpson and E. Weiner, Oxford English Dictionary.
Clarendon Press, 1989, vol. 18, 2nd edn.

[9] S. Winkler and J. von Pilgrim, “A survey of Traceability in
Requirements Engineering and Model-driven Development,”
Software and Systems Modeling, vol. 9, no. 4, pp. 529–565,
2010.

[10] I. Galvao and A. Goknil, “Survey of Traceability Approaches
in Model-Driven Engineering,” in Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing
Conference, 2007.

[11] G. Spanoudakis and A. Zisman, “Software Traceability: A
Roadmap,” in Handbook of Software Engineering and Knowl-
edge Engineering. World Scientific Publishing, 2004, pp.
395–428.

[12] R. J. Wieringa, “An Introduction to Requirements Traceabil-
ity,” Faculty of Mathematics and Computer Science, Vrije
Universiteit, Tech. Rep. IR-389, 1995.

[13] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C.
Royer, A. Rummler, and A. Sousa, “A Model-driven Trace-
ability Framework for Software Product Lines,” Software and
Systems Modeling, 2009.

[14] S. Bohner and R. Arnold, Software Change Impact Analysis.
IEEE Computer Society Press, 1996.

[15] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling
Language Reference Manual. Pearson Higher Education,
2004.

[16] “Access Help and How-to,” accessed: May 19,
2011. [Online]. Available: http://office.microsoft.com/en-us/
access-help/

[17] J. P. Almeida, P. v. Eck, and M.-E. Iacob, “Requirements
Traceability and Transformation Conformance in Model-
Driven Development,” in Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing Con-
ference, 2006, pp. 355–366.

[18] J. Cleland-Huang, C. K. Chang, and M. Christensen, “Event-
Based Traceability for Managing Evolutionary Change,”
IEEE Trans. Softw. Eng., vol. 29, pp. 796–810, 2003.

[19] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhan-
skaya, and S. Christina, “Goal-centric Traceability for Manag-
ing Non-functional Requirements,” in Proceedings of the 27th
international conference on Software engineering. ACM,
2005, pp. 362–371.

[20] J. Cleland-Huang and D. Schmelzer, “Dynamically Tracing
Non-Functional Requirements through Design Pattern Invari-
ants,” in Proceedings of the 2nd International Workshop on
Traceability in Emerging Forms of Software Engineering.
ACM, 2003.

[21] J. Cleland-Huang, C. K. Chang, and Y. Ge, “Supporting
Event Based Traceability through High-Level Recognition
of Change Events,” Computer Software and Applications
Conference, Annual International, vol. 0, p. 595, 2002.

[22] P. Mäder, O. Gotel, and I. Philippow, “Enabling Automated
Traceability Maintenance through the Upkeep of Traceability
Relations,” in Proceedings of the 5th European Conference on
Model Driven Architecture - Foundations and Applications.
Springer-Verlag, 2009, pp. 174–189.

[23] B. Ramesh and M. Jarke, “Toward Reference Models for
Requirements Traceability,” IEEE Transactions on Software
Engineering, vol. 27, no. 1, pp. 58–93, 2001.

[24] K. Mohan and B. Ramesh, “Managing Variability with Trace-
ability in Product and Service Families,” Hawaii International
Conference on System Sciences, vol. 3, 2002.

[25] A. Egyed, “A Scenario-Driven Approach to Trace Depen-
dency Analysis,” IEEE Transactions on Software Engineer-
ing, vol. 29, no. 2, pp. 116–132, 2003.

[26] N. Aizenbud-Reshef, R. F. Paige, J. Rubin, Y. Shaham-Gafni,
and D. S. Kolovos, “Operational Semantics for Traceability,”
in Proceedings of the ECMDA Traceability Workshop, at
European Conference on Model Driven Architecture, 2005.

[27] F. Jouault, “Loosely Coupled Traceability for ATL,” in In
Proceedings of the European Conference on Model Driven
Architecture (ECMDA) workshop on traceability, 2005, pp.
29–37.

[28] D. S. Kolovos, R. F. Paige, and F. Polack, “Merging Models
with the Epsilon Merging Language (EML),” in MoDELS’06,
2006, pp. 215–229.

[29] J. Falleri, M. Huchard, and C. Nebut, “Towards a Traceability
Framework for Model Transformations in Kermeta,” in Pro-
ceedings of the ECMDA Traceability Workshop, at European
Conference on Model Driven Architecture, 2006, pp. 31–40.

88

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

