Verification for Java’s Monitor Concept

August 14, 2002

Erika Abrahdm-Mumm!, Frank S. de Boer?,
Willem-Paul de Roever!, and Martin Steffen!

! Christian- Albrechts-University Kiel, Germany
2 Utrecht University, The Netherlands

Abstract. Besides the features of a class-based object-oriented lan-
guage, Java integrates concurrency via its thread-classes, allowing for
a multithreaded flow of control. The concurrency model includes shared-
variable concurrency via instance variables, coordination via reentrant
synchronization monitors, synchronous message passing, and dynamic
thread creation.

To reason about multithreaded programs, we introduce in this paper
an assertional proof method for safety properties for Javamr (“Multi-
Threaded Java”), a small concurrent sublanguage of Java, covering the
mentioned concurrency issues as well as the object-based core of Java,
i.e., object creation, side effects, and aliasing, but leaving aside inheri-
tance and subtyping. We show soundness and relative completeness of
the proof method.

Table of Contents

Introduction. e 3
The programming language Javamr - .-« coovriiiiiii i 4
2.1 Introductionottt 4
2.2 ADSEract Syntaxottt e 4
2.3 SeMANtICS « . vttt ettt e 7
2.3.1 States and configurations 8
2.3.2 Operational semantics, 10
The assertion language i 12
B0 S 4 11 7 < 14
3.2 SemantiCs . ..ottt e e 15
The proof system e 18
4.1 Proofoutlines. i 19
4.2 Proof system 22
4.2.1 Initial correctnessc.ooiiiiininiiiinnenen... 24
4.2.2 Local COrrectnessc.ouueiimienenneeneneenennn. 25
4.2.3 The interference freedom test 25
4.2.4 The cooperation testcoiiiiiiininnenean.. 26
Soundness and completeness. 30
5.1 SOUNANESS . . vt ee ettt e e e 30

5.2 ComPIEteNeSS . . .« vttt et e e e 32

Introduction 3
1 Introduction

The semantical foundations of Java [11] have been thoroughly studied ever since
the language gained widespread popularity (see e.g. [3,19,8]). The research con-
cerning Java’s proof theory mainly concentrated on various aspects of sequential
sublanguages (see e.g. [14,22,18]). Besides standard object-oriented features,
Javaintegrates mulithreading and monitor synchronization.

This paper presents a proof system for multithreaded sublanguage of Java.
The work extends [2] in that besides cuncrurrency the issues of monitor synchro-
nization are captured. We introduce an abstract programming language Javayr,
a subset of Java, featuring dynamic object creation, method invocation, object
references with aliasing, and specifically concurrency and Java’s monitor disci-
pline.

The assertional proof system for verifying safety properties of Javayr is for-
mulated in terms of proof outlines [17], i.e., of programs augmented by auxiliary
variables and with Hoare-style assertions [10,12] associated with every control
point.

The behavior of a Javayr program results from the concurrent execution of
method bodies, that can interact by shared-variable concurrency, synchronous
message passing for method calls, and object creation. In order to capture these
features in a modular way, the assertional logic and the proof system are for-
mulated in two levels, a local and a global one. The local assertion language
describes the internal object behavior. The global behavior, including the com-
munication topology of the objects, is expressed in the global language. As in
the Object Constraint Language (OCL) [23], properties of object-structures are
described in terms of a navigation or dereferencing operator.

The execution of a single method body in isolation is captured by standard
local correctness conditions.

To support a clean interface between internal and external behavior, Javayr
does not allow qualified references to instance variables. As a consequence,
shared-variable concurrency is caused by simultaneous execution within a single
object, but not across object boundaries, and can therefore be handled on the
local level, as well. A further healthy effect of disallowing references to external
instance variables is that it reduces the potential of interference considerably,
which means much less proof obligations generated by the proof system. The
interference freedom test [17,15] formulates the corresponding verification con-
ditions. It has especially to accommodate for reentrant code and the specific
synchronization mechanism.

Affecting more than one instance, synchronous message passing and object
creation can be established locally only relative to assumptions about the com-
municated values. These assumptions are verified in the cooperation test on the
global level. The communication can take place within a single object or between
different objects. As these two cases cannot be distinguished syntactically, our
cooperation test combines elements from similar rules used in [7] and in [15] for
CSP.

4 The programming language Javayt

Overview This paper is organized as follows. Section 2 defines the syntax and
semantics of Javayr. After introducing the assertion language in Section 3, the
main Section 4.2 presents the proof system.

2 The programming language Javayr

In this section we introduce the language Javayt (“Multi- Threaded Java”). We
start with highlighting the features of JavayT and its relationship to full Java,
before formally defining its abstract syntax and semantics.

2.1 Introduction

Javapyr is a multithreaded sublanguage of Java. Programs, as in Java, are given
by a collection of classes containing instance variable and method declarations.
Instances of the classes, i.e., objects, are dynamically created, and communicate
via method invocation, i.e., synchronous message passing. As we focus on a proof
system for the concurrency aspects of Java, all classes in Javayr are thread
classes in the sense of Java: Each class contains a start-method that can be
invoked only once for each object, resulting in a new thread of execution. The
new thread starts to execute the start-method of the given object while the
initiating thread continues its own execution.

As a mechanism of concurrency control, methods can be declared as syn-
chronized. Each object has a lock which can be owned by at most one thread.
Synchronized methods of an object can be invoked only by a thread which owns
the lock of the object. If the thread does not own the lock, it has to wait until
the lock gets free, i.e., till in the object all current synchronized method execu-
tions terminate. If a thread owns the lock of an object, it can recursively invoke
several synchronized methods of that object. This corresponds to the notion of
re-entrant monitors and eliminates the possibility that a single thread deadlocks
itself on an object’s synchronization barrier.

Besides mutual exclusion, via the lock-mechanism for synchronized methods,
objects offer the methods wait, notify, and notifyAll as means to facilitate efficient
thread coordination at the object boundary. A thread owning the lock of an
object can block itself and give the lock free by invoking wait on the given object.
The blocked thread can be reactivated by another thread via the object’s notify
method; the reactivated thread must re-apply for the lock before it may continue
its execution. The method notifyAll, finally, generalizes notify in that it notifies
all threads blocked on the object.

2.2 Abstract syntax

Similar to Java, the language Javay is strongly typed and supports class types
and primitive, i.e., non-reference types. As built-in primitive types we restrict
to integers and booleans, denoted by Int and Bool. Besides the built-in types,
the set of user-definable types is given by a set of class names C, with typical

The programming language Javayt 5

element c. Furthermore, the language allows pairs of type t1 X t2 and sequences of
type listt. Side-effect expressions without a value, i.e., methods without a return
value, will get the type Void. Thus the set of all types 7 with typical element ¢
is given by the following abstract grammar:

t::=Void | Int | Bool | ¢ | ¢t x t | listt

For each type, the corresponding value domain is equipped with a standard
set F' of operators with typical element f. Each operator f has a unique type
t1 X --Xt, — t and a fixed interpretation f, where constants are operators of zero
arity. Apart from the standard repertoire of arithmetical and boolean operations,
the set F' of operators also contains operations on tuples and sequences like
projection, concatenation, etc.

Since Javayr is strongly typed, all program constructs of the abstract syntax
—uvariables, expressions, statements, methods, classes— are silently assumed to
be well-typed, i.e., each method invoked on an object must be supported by
the object, the types of the formal and actual parameters of the invocation must
match, etc. In other words, we work with a type-annotated abstract syntax where
we omit the explicit mentioning of types when no confusion can arise. As the
static relationships between classes are orthogonal to multithreading aspects, we
ignore in Javayr the issues of inheritance, and consequently subtyping, overrid-
ing, and late-binding. For simplicity, we neither allow method overloading, i.e.,
we require that each method name is assigned a unique list of formal parameter
types and a return type. In short, being concerned with the verification of the
run-time behavior, we assume a simple monomorphic type discipline for Javay .

For variables, we notationally distinguish between instance and local vari-
ables. Instance variables are always assumed to be private in Javay. They hold
the state of an object and exist throughout the object’s lifetime. Local variables
are stack-allocated; they play the role of formal parameters and variables of
method definitions and only exist during the execution of the method to which
they belong. The set of variables Var = IVar U TVar with typical element y is
given as the disjoint union of the instance and the local variables. Var® denotes
the set of all variables of type t, and correspondingly for IVar! and TVart. As
we assume a monomorphic type discipline, Var® N Var' = § for distinct types t
and t'. We use z,z', 2y, ... as typical elements from I'Var, and u,v,u’,vy,... as
typical elements from TVar.

Basic constructs The syntax is summarized in the Tables 1 and 2. Besides
using instance and local variables, expressions exp € FExp are built from this,
nil, and from subexpressions using the given operators. We will use e as typical
element for expressions, and Ea:pﬁmc to denote the set of well-typed expressions
of type ¢t in method m € M of class ¢ € C, where M is an infinite set of method
names containing main, start, run, wait, notify, and notifyAll. The expression this
is used for self-reference within an object, and nil is a constant representing an
empty reference.

6 The programming language Javayt

As statements stm € Stm, we allow assignments, object creation via new,
method invocation and standard control constructs like sequential composition,
conditional statements, and iteration. Furthermore, we write ¢ for the empty
statement. We refer by Stm,, . to the set of statements in method m of class c.

A method definition consists of a method name m, a list of formal parameters
U1,... ,Un, and a method body body,, . of the form stm;return e,;. The set
Meth. contains the methods of class c. To simplify the proof system we require
that method bodies are terminated by a single return statement return ey, giving
back the control and possibly a return value. Additionally, methods are decorated
by a modifier modif distinguishing between non-synchronized and synchronized
methods.® We use sync(c,m) to state that method m in class c is synchronized.
In the sequel we also refer to statements in the body of a synchronized method
as being synchronized. A class is defined by its name ¢ and its methods, whose
names are assumed to be distinct.

ezp =z | u | this | nil | f(ezp, ..., ezp)

exp,.; =€ | exp
Uret 2= € | 10
stm = x = exp | u := exp | u := new®
| exp.m(exp,..., exp);receive ur.: | exp.start()

| €| stm;stm | if ezp then stm else stm fi
| whileezpdostmod...

modif ::= nsync | sync
meth ::= modif m(u,...,u){ stm;return ezp, ,}
methpredef ::= methwn methsare methwaie Mmethnotiy Methnoityan
class ::= c{meth...meth methpredef }
classmain ::= c{meth...meth methman methpreder }
prog = (class. . .class classmain)

Table 1. Javaur abstract syntax

A program, finally, is a collection of class definitions having different class
names, where classmain is the entry point of the program execution. This class
specifically contains a main-method methm,in without return value. We call its
body, written as body,,i,, the main statement of the program.

The set of instance variables IVar, of a class c¢ is implicitly given by the set
of all instance variables occurring in that class. Correspondingly for methods,
the set of local variables T'Var,, . of a method m in class ¢ is given by the set
of all local variables occurring in that method.

3 Java does not have the “non-synchronized” modifier: methods are non-synchronized
by default.

The programming language Javayt 7

Thread coordination Besides the user-definable methods, we consider a num-
ber of predefined ones with fixed meaning (cf. Table 2). The methods run and
start serve to launch a thread, where run contains the actual body of the thread,
and start is a “wrapper” around run which allows the initiator of the thread to
asynchronously continue after setting off the execution of the new thread. The
methods wait, notify, and notifyAll can be used to block and reactivate threads at
the object boundary, as informally described in Section 2.1. Java’s Thread class
additionally support methods for suspending, resuming, and stopping a thread,
but they are deprecated and thus not considered here.

methen == modif run(){ stm;return }
methstare ::= nsync start(){ this.run(); receive; return }
methwait ::= nsyncwait(){ ?signal; returngesiocr }
methnory ::= nsyncnotify(){ !signal ; return }
methnotifyan ::= nsync notifyAll(){ !signal_all; return }

methmain ::= nsync main(){ stm;return }

Table 2. Javayr abstract syntax: predefined methods

Restrictions Besides the mentioned simplifications on the type system, we im-
pose for technical reasons the following restrictions on the language: Statements
of the form u := ey.m(€) are used as syntactic sugar for the composite statement
eo-m(€); receive u. We require that method invocation and object creation state-
ments contain only local variables, i.e., that none of the expressions ey, ... , e,
contains instance variables, and that formal parameters do not occur on the
left-hand side of assignments. This restriction implies that during the execution
of a method the values of the actual and formal parameters are not changed.
Finally, the result of an object creation or method invocation statement may
not be assigned to instance variables. This restriction allows for a proof system
with separated verification conditions for interference freedom and cooperation.
It should be clear that it is possible to transform a program to adhere to this
restrictions at the expense of additional local variables and thus new interleaving
points.

2.3 Semantics

In this section, we define the operational semantics of Javayr, especially, the
mechanisms of multithreading, dynamic object creation, method invocation, and
coordination via synchronization. After introducing the semantic domains, we
describe states and configurations in the following section. The operational se-
mantics is presented in Section 2.3.2 by transitions between program configura-
tions.

8 The programming language Javayt

2.3.1 States and configurations To give semantics to the expressions, we
first fix the domains Val® of the various types . Let Val'™ and Val®*® denote the
set of integers and booleans, Val™* be finite sequences over values from Val,
and let Val®**'2 stand for the product Val®* x Val®2. For class names ¢ € C, the
set Val® with typical elements a, 3, . .. denotes an infinite set of object identifiers,
where the domains for different class names are assumed to be disjoint. For each
class name ¢, nil® ¢ Val® represents the value of nil in the corresponding type.
In general we will just write nil, when c is clear from the context. We define
Val;,,; as Val® U {nil°}, and correspondingly for compound types. The set of all
possible non-nil values | J, Val" is written as Val, and Val,,; denotes |J, Vall,.

Let Init : Var — Val be a function assigning the initial value of type t to
each variable y € Vart, i.e., nil, false, and 0 for class, boolean, and integer types,
respectively, and analogously for compound types, where sequences are initially
empty. We define this ¢ Var, such that the self-reference is not in the domain of
Init.

The configuration of a program consists of all currently executing threads
together with the set of existing objects and the values of their instance variables.
Before formalizing the global configurations of a program, we define local states
and local configurations. In the sequel we in general identify the occurrence of a
statement in a program with the statement itself.

A local state T € X, of a thread holds the values of its local variables and is
modeled as a partial function of type TVar — Val,,;. For a class c and a method
m of ¢ we use the notation 7™ to refer to a local state of a thread executing
method m of an instance of class c. The initial local state 7;,;, or 7,.;; assigns
to each local variable u from dom(7) the value Init(u).

A local configuration (a, T, stm) of a thread executing within an object a #
nil specifies, in addition to its local state 7, its point of execution represented
by the statement stm. A thread configuration £ is a stack of local configurations
(a0, 70, stmo) (a1, 1, stm1) - . . (Qn, Tn, Stmy,), representing the chain of method
invocations of the given thread. We write £ o («, 7, stm) for pushing a new local
configuration onto the top of the stack.

The state of an object is characterized by its instance state 0,,; € Xinst
of type IVar U {this} — Val,,; which assigns values to the self-reference this
and to instance variables.* For a class ¢ we write o¢,, to denote instance states
assigning values to the instance variables of class ¢, i.e., 05,,, is of type I'Var, U
{this} — Val,,;,. The initial instance state o™ or "} assigns a value from
Val® to this, and to each of its remaining instance variables = the value Init(z).
The semantics will maintain o§,, (this) € Val® as invariant.

A global state o € X stores for each currently existing object its instance
state and is modeled as a partial function of type (|J.cc Val®) = Yinst- The set
of existing objects of type ¢ in a state o is given by dom®(¢), and dom.,; (o)
is defined by dom®(o) U {nil°}. For the built-in types Int and Bool we define

dom® and domtm-l, independently of o, as the set of pre-existing values Val™

4 In Java, this is a “final” instance variable, which for instance implies, it cannot be
assigned to.

The programming language Javayt 9

and Val®®® respectively. For compound types, dom' and dom!; are defined
correspondingly. We refer to the set |J, dom’ by dom(c); domyi(c) denotes
U; dom?;,. The instance state of an object a € dom (o) is given by o(a) with the
invariant property o(a)(this) = a. We call an object a € dom(o) existing in o,
and we throughout require that, given a global state, no instance variable in any
of the existing objects refers to a non-existing object, i.e., o(a)(z) € domy; (o)
for all @ € dom®(c). This will be an invariant of the operational semantics of
the next section.

A global configuration (T,o) consists of a set T of thread configurations of
the currently executing threads, together with a global state ¢ describing the
currently existing objects. Analogously to the restriction on global states, we
require that local configurations (a, 7, stm) in (T, o) refer only to existing object
identities, i.e., @ € dom(c) and 7(u) € domy; (o) for all variables u from the
domain of 7; again this will be an invariant of the operational semantics. In the
following, we write (a, 7, stm) € T if there exists a local configuration (a, 7, stm)
within one of the execution stacks of T'.

Expressions e € Expfn’c are evaluated with respect to an instance local state
(055, T™C) € Zinst X Xjoc. The semantic function [Jg : (Zinst X Zioc) —
(Ezp — Val,,;) shown in Table 3 evaluates expressions containing variables
from dom(o;,,,) U dom(7) in the context of an instance local state (o,,,7):
Instance variables = and local variables u are evaluated to o, (z) and 7(u),

respectively; this evaluates to o, (this), and nil has the nil-reference as value,
where compound expressions are evaluated by homomorphic lifting.

[[:c]]me = Oinat (T)
[u]]gmst’T = T(u)
[[this]]‘;iwf = 0ns(this)
ﬂnil]]gmst'T = nll

[Fler, ..]2 = f(led]Z™", .. [enl™7)

Table 3. Expression evaluation

For a local state 7, we denote by 7[u— v] the local state which assigns the
value v to u and agrees with 7 on the values of all other variables. The semantic
update o, [z~ v] of instance states is defined analogously. Correspondingly
for global states, o[a.z+ v] denotes the global state which results from o by
assigning v to the instance variable x of object a.. We use these operators anal-
ogously for simultaneously setting the values of vectors of variables. We use
T[§+— 0] also for arbitrary variable sequences, where instance variables are un-
touched, i.e., 7[§f — 9] is defined by 7[d@ —], where @ is the sequence of the local
variables in ¢ and ¥, the corresponding value sequence. Similarly, for instance
states, 0, g U] is defined by o,,,, [U;] where Z is the sequence of the

10 The programming language Javayt

instance variables in ¢ and ¥, the corresponding value sequence. The semantics
of o[a.§+— 7] is analogous. Finally for global states, o[a — 0%,,,] equals o except
on a; note that in case a ¢ dom®(c), the operation extends the set of existing

objects by «, which has its instance state initialized to o%,,.

2.3.2 Operational semantics The operational semantics of Javayr is given
inductively by the rules of Tables 4 and 5 as transitions between global con-
figurations. Before having a closer look at the semantical rules for the tran-
sition relation — , let us start by definining the starting point of a pro-
gram. The initial configuration (Tp,0¢) of a program satisfies the following:
To = {(a, 7™, body pain) }, Where ¢ is the main class, and a € Val®. More-
over, dom(og) = {a} and ao(@) = 07" [this — a].

In Java, the main method of a program is static. Since Javay;r does not have
static methods and variables, we define the initial configuration as having a single

initial object in which an initial thread starts to execute the main-method.

We call a configuration (T, o) of a program reachable iff there exists a com-
putation (Ty, 09) —* (T, o) such that (T, o¢) is the initial configuration of the
program and —* the reflexive transitive closure of —. A local configuration
(a, T, stm) € T is enabled in (T, o), if the statement stm can be executed at the
current point, i.e., if there is a computation step (T, o) — (T", ¢') executing stm
in the local state 7 and object «.

Assignments to instance or local variables update the corresponding state
component, i.e., either the instance state or the local state (cf. rules ASSins
and ASSpc). Object creation by u := new® as shown in rule NEW creates a
new object of type ¢ with a fresh identity stored in the local variable u, and
initializes its instance variables. Invoking a method extends the call chain by
a new local configuration (cf. rule CALL). After initializing the local state and
passing the parameters, the thread begins to execute the method body. The
condition sync(c,m) — —owns(T,) expresses that a synchronized method of
an object can be invoked by a thread only if no other threads holds its lock, i.e.,
if the lock is free or if the executing thread already owns it.

Threads being blocked or waiting on an object, though, temporarily relin-
quish the lock. Formally, the wait set wait(T,«) of an object is given as the set
of all stacks in T" with a top element of the form («, 7, ?signal; stm). Analogously,
we will need the set notified(T, a) of threads that have been notified and trying
to get hold of the lock again: It is given as the set of all stacks in T with a top
element of the form (a, 7, returngeyock)-

With these definitions, the predicate owns(&,3) is true iff there exists a
(8, T, stm) € £ with stm synchronized and & ¢ wait(T, 8) U notified(T, 5). The
definition is used analogously for sets of threads. An invariant of the seman-
tics is that at most one thread can own the lock of an object at a time, i.e.,
for all reachable (T, o), for all £ and &' in T and a € dom®(o), owns(£,) and
owns (&',) imply £ = &'.

The programming language Javayt 11

When returning from a method call (cf. rule RETURN), the callee evaluates its
return expression and passes it to the caller which subsequently updates its local
state. The method body terminates its execution and the caller can continue.

We elide the rules for the remaining sequential constructs —sequential com-
position, conditional statement, and iteration— as they are standard.

Assins
(TU{€o (a,7,z:=€;5tm)},0) — (T U {€ o (a, T, stm)}, ocla.z r—>[[e]]g(o‘)"r]) '

ASSipe
(T U{go (a7, u=e;stm)}, o) — (T U {£ o (a,r[urs[e]Z*)7], stm)}, o)

B € Val\dom(c) 0, =ocnths—B] o =0o[f0,,,]

inst i

NEwW
(T U {€ o (a, 7, u:=new®; stm) }, 0) — (T U {€ o (a, 7[u > B], stm)}, o)

m ¢ {start, wait, notify, notifyAll } modif m(@){ body } € Meth.
B =leo g(“)’f € dom“(0o) T = T-m’c[ﬁ»—)ﬂé']];(a)’T] sync(c, m) — —owns (T, B)

init

CALL
(T U {€ o0 (a,T, e0.m(&); stm)},) — (T U {£ o (a, T, stm) o (8,7, body)}, o)

o fl
= (et Hl]:emi]]g(ﬁ),]

RETURN
(T U {€ o (a, T, receive ue; stm) o (B, 7, return eqt)},0) — (T U {€ o (a, 7", stm)}, o)

Table 4. Operational semantics (1)

The remaining rules of Table 5 handle Javayr’s methods for thread manip-
ulation. The start method brings a new thread into being (cf. rule CALLgtgpt),
thereby initializing the first activation record of a new stack. Only the first in-
vocation of the start-method has this effect. This is captured by the predicate
started which holds for a global configuration 7' and an instance « iff there
exists a stack (ag, 70, stmg) - - - (An, Tn, stmy,) € T such that a = ag. Further in-
vocations of the start-method are without effect (cf. rule CALLZF®,).5 A thread
ends its lifespan by arriving at the end of its earliers local configuration (cf.
rule RETURNG¢4r¢), that is by returning from the initial invocation of the main-
method or from a start-method.® Note that, since the initial thread begins its

% In Java an exception is thrown if the thread is already terminated.
5 The worked-off local configuration (a,7,€) is kept in the global configuration to
ensure that the thread of a cannot be started twice.

12 The assertion language

execution in the initial object, according to the definition of the started predi-
cate, the start-method of the initial object cannot be invoked.

The remaining three methods offer typical monitor synchronisation mech-
anism at the object boundary, whose calls are descibed in rule CALL.onitor-
In all three cases it is necessary that the caller owns the lock of the object in
question. If not, the caller will deadlock, as, once devoid of the lock, the caller
stops and will never obtain it. In contrast, the successful call of synchronised
methods as formalized by rule CALL of Table 4 depends contra-positively on the
non-ownership of the lock by the rest of the program, which of course changes if
another thread gives it free again. In Java, invoking a monitor method without
owning the lock raises an exception, which terminates the culprit thread, but let
the rest of the program continue. Insofar, our model is faithful with the behavior
in Java.

A thread can block itself on an object whose lock it owns by invoking the
object’s wait-method, thereby relinquishing the lock and placing itself into a’s
wait set (cf. rule CALLyonitor). In our formalization, this is indicated in that
the thread is about to execute the statement ?signal after successful invokation
of the wait method. Remember that according to the predicate owns the thread
releases the lock thereby.

After having itself put on ice, the thread awaits notification to be reacti-
vated by another thread who invokes the notify() method of the object. It is
required that the notifier must own the lock of the object in question. The
Isignal-statement in the above method thus reactivates a thread waiting for no-
tification on the given object (cf. rule SIGNAL). It reactivates one of the blocked
threads at least insofar as it is given the chance to re-apply for the lock: Accord-
ing to rule RETURN 4, the receiver can continue after notification in executing
returngesock only if the lock is free. Note that the notifier does not automati-
cally hand-over the lock to the one being notified but continues to own it. This
behavior is know as signal-and-continue monitor discipline [5].

If there are no threads waiting on the object, then the !signal of the notifier is
without effect (rule SIGNALgy;p). The notifyAll-method generalizes notify in that
all waiting threads are notified via the Isignal_all-broadcast (cf. rule SIGNALALL).
The effect of this statement is given by setting signal(T,a) as {£ o (B, T, stm) |
&o (B,1,stm) € T\wait(T,a) V & o (B, T, ?signal; stm) € wait(T,a)}.

3 The assertion language

In this section we introduce assertions to specify properties of Javayr programs.
The assertion logic consists of a local and a global sublanguage. The local asser-
tion language is used to annotate methods in terms of their local variables and
of the instance variables of the class to which they belong. The global assertion
language describes a whole system of objects and their communication structure
and will be used in the cooperation test.

To be able to argue about communication histories, represented as lists of
objects, we add the type Object as the supertype of all classes into the assertion

The assertion language 13

B = [[e]]g(a)’f € dom®(o) —started(T U {€ o (a, 7, e.start(); stm)}, B)

CALLgstart
(T U {€ o (a, T, estart(); stm)}, 0) — (T U {£ o (a, T, stm), (B, Tz‘siai;t’cﬁ bOdystart,c)}7 o)
B = |Ie]]g(a)’T € dom®(o) started(T U {€ o (a, T, e.start(); stm) }, B))
CALLZfZ’_t
(T U {€o (a,T,estart(); stm)},0) — (T U {€ o (a, T, stm)}, o)
RETURNtart
(T U {(a,7,return)}, o) — (T'U {(a, 7,€)},0)
m € {wait, notify, notifyAll }
B = [[e]];(a)"r € dom®(o) owns(€ o (a, 7, e.m(); stm), B)

CALLmom’tor

(T U{¢o(a,7,em();stm)}, o) — (T U {£ o (a,7,stm) o (B, 7., body,,)}, o)
—owns(T, B)
RETURN yqit

(T U {€ o (a, T, receive; stm) o (B, 7', return esiock) }, o) — (T U {€ o (a, 7, stm)}, o)

SIGNAL
(T U {€ o (a, T, !signal; stm)} U {¢' o (a, 7", ?signal; stm’)}, o) — (T U {€ o (a, 7, stm)} U {¢' o (a, 7', stm")}, o)

wait(T,a) =0

SIGNALgpip
(T U {€o (a,T,!signal; stm)}, o) — (T U {£ 0o (a, T, stm)}, o)

T' = signal(T, B)
SIGNALALL

(T U {€ o (a, T, Isignalall; stm) }, 0) — (T" U {€ o (a, T, stm)}, o)

Table 5. Operational semantics (2)

14 The assertion language

language. Note that we allow this type solely in the assertion language, but not in
the programming language, thus preserving the assumption of monomorphism.

After fixing the syntax of the assertions in the next section, we define its
semantics and provide basic substitution properties.

3.1 Syntax

In the language of assertions, we introduce a countably infinite set LVar of well-
typed logical variables with typical element z, where we assume that instance
variables, local variables, and this are not in LVar. Logical variables are used for
quantification in both the local and the global language. Besides that, they are
used as free variables to represent local variables in the global assertion language:
To express a local property on the global level, each local variable in a given local
assertion will be replaced by a fresh logical variable.

Table 6 defines the syntax of the assertion language. Local expressions exp; €
LExp are expressions of the programming language possibly containing logical
variables. The set LExpfn,c consists of all local expressions of type ¢ in method m

of class ¢, where LEzp® is defined by Um’c LE'xpfn,c. In abuse of notation, we use e,
e’ ... not only for program expressions of Table 1, but also for typical elements of
local expressions. Local assertions ass; € LAss, with typical elements p,p',q, ...,
are standard logical formulas over boolean local expressions; local assertions in
method m of class ¢ form the set LAss,, .. We allow three forms of quantification
over the logical variables: Unrestricted quantification 3z(p) is solely allowed for
integer and boolean domains, i.e., z is required to be of type Int or Bool. For
reference types ¢, this form of quantification is not allowed, as for those types,
the existence of a value dynamically depends on the global state, something one
cannot speak about on the local level, or more formally: Disallowing unrestricted
quantification for object types ensures that the value of a local assertion indeed
only depends on the values of the instance and local variables, but not on the
global state. Nevertheless, one can assert the existence of objects on the local
level satisfying a predicate, provided one is explicit about the set of objects to
range over. Thus, the restricted quantifications 3z € e(p) or 3z C e(p) assert the
existence of an element, respectively, the existence of a subsequence of a given
sequence e, for which a property p holds.

Global expressions exp, € GEzp, with typical elements E,E',..., are con-
structed from logical variables, nil, operator expressions, and qualified references
E.z to instance variables z of objects E. We write GExp® for the set of global
expressions of type t. Global assertions ass, € GAss, with typical elements
P,Q ..., are logical formulas over boolean global expressions. Unlike the local
language, the meaning of the global one is defined in the context of a global
state. Thus unrestricted quantification is allowed for all types and is interpreted
to range over the set of existing values, i.e., the set of values domy; (o) in a
global configuration (T, o).

The assertion language 15

exp; :=z | = | u | this | nil | f(ezp,;,... , ezp;) e € LEzp local expressions
ass; == exp, | mass; | ass; A ass;
| Jz(ass;) | Az € ezp;(assi) | 3z C exp;(ass;) p € LAss local assertions

exp, =z | nil | f(ezp,,... ,exp,) | exp,.x E € GEzp global expressions
assg = exp, | nassy | assg A assg | Iz(assg) P € GAss global assertions

Table 6. Syntax of assertions

3.2 Semantics

Next, we define the interpretation of the assertion language. The semantics is
fairly standard, except that we have to cater for dynamic object creation when
interpreting quantification.

Expressions and assertions are interpreted relative to a logical environment
w € {2, a partial function of type LVar — Val,,, assigning values to logical
variables. We denote by w[Z'+] the logical environment that assigns v; € Val,,;
to z;, and agrees with w on all other variables. Similarly to local and instance
state updates, the occurrence of instance variables in 2" is without effect. For a
logical environment w and a global state ¢ we say that w refers only to values
existing in o, if w(z) € domy (o) for all z € dom(w). This property matches
with the definition of quantification which ranges only over existing values and
nil, and with the fact that in reachable configurations local variables may refer
only to existing values or to nil. Correspondingly for local states, we say that
a local state 7 refers only to values existing in o, if 7(u) € domyy (o) for all
u € dom(T).

The semantic function [.], of type (£2 X Xipst X Xipe) = (LEzp U LAss —
Val,,;;) evaluates local expressions and assertions in the context of a logical en-
vironment w and an instance local state (o,,,,7) (cf. Table 7). The evaluation
function is defined for expressions and assertions that contain only variables
from dom(w) U dom(o,,,,) U dom(7). The instance local state provides the con-
text for giving meaning to programming language expressions as defined by the
semantic function [_]; the logical environment evaluates logical variables. An
unrestricted quantification Jz(p) is evaluated to true in the logical environment
w and instance local state (0,,,,7) if and only if there exists a value v € Val*
such that p holds in the logical environment w[z+ v] and instance local state
(Tinst»T)» Where for the type ¢ of z only Int or Bool is allowed. The evaluation
of a restricted quantification 32 € e(p) with z € LVar! and e € LEzp"tt ig
defined analogously, where the existence of an element in the sequence is re-
quired. An assertion 3z C e(p) with z € LVar"* and e € LEzp"™? states the
existence of a subsequence of e for which p holds. In the following we also write
W, O st T E p for [p] 27" = true. By . p, we express that w,0,,,,, 7 Ez P
holds for arbitrary logical environments, instance states, and local states.

Since global assertions do not contain local variables and non-qualified ref-
erences to instance variables, the global assertional semantics does not refer to

16 The assertion language

[[z]]z,t’msn”' = w(z)
[x]]z,amm" = Oime(T)
bz = ot
[this] 7" = gy, (this)
I[n”]]:,amsuf = nil
[fler,...,en)]27™ " = f(lea]77™7, ..., [eal27™7)

(P12 = true) iff (]S = false)
(Ios APl ™" = true) I ([pi]2"" = true and [pa] 2" = true)
([Fz(p)]5 7" = true) iff (|[p]|“2[2 = vheinet™ = trye for some v € Val)
) (
) (

Il
:

([Bee@)]e ™" = true ale 0L

([BzCe()I 7" = true

=true for some v € Val,;)
wlz = v],0, 0T

[zCe A p], =true for some v € Val,;)

Table 7. Local evaluation

instance local states but to global states. The semantic function []g of type
(2xX) — (GEzp U GAss — Val,,;), shown in Table 8, gives meaning to global
expressions and assertions in the context of a global state o and a logical envi-
ronment w. To be well-defined, w is required to refer only to values existing in o,
and the expression respectively assertion may only contain free variables from
dom(w) U dom (o). Logical variables, nil, and operator expressions are evaluated
analogously to local assertions. The value of a global expression E.x is given by
the value of the instance variable x of the object referred to by the expression E.
The evaluation of an expression E.z is defined only if E refers to an object ex-
isting in o. Note that when E and E' refer to the same object, that is, F and E’
are aliases, then E.x and E'.x denote the same variable. The semantics of nega-
tion and conjunction is standard. A quantification 3z(P) evaluates to true in a
logical environment w and global state ¢ if and only if P evaluates to true in the
logical environment w[z— v] and global state o, for some value v € dom; (o).
Note that quantification over objects ranges over the set of eristing objects and
nil, only.

[Ig7 = w(2)
[nillg” = mnil

[F(Br,... B = f([E]S7,... [Ea]g”)
[Ez]g” = o([E]S7)(x)

([-P]g 7 = true) iff ([Pl = false)
([PL A P2]g” = true) iff ([Pi]g” = true and [P]g¢ = true)
([32(P)]g" = true) iff ([[P]];’[z'_’”]’a = true for some val € dom,i(c))

Table 8. Global evaluation

The assertion language 17

For a global state o and a logical environment w referring only to values
existing in o we write w,o =g P when P is true in the context of w and o. We
write =g P if P holds for arbitrary global states o and logical environments w
referring only to values existing in o.

The verification conditions defined in the next section involve the following
substitution operations: The standard capture-avoiding substitution p[e/y] re-
places in the local assertion p all occurrences of the given distinct variables
by the local expressions €. We apply the substitution also to local expressions.
The following lemma expresses the standard property of the above substitution,
relating it to state-update. The relation between substitution and update for-
mulated in the lemma asserts that p[€/¢] is the weakest precondition of p wrt. to
the assignment. The lemma will be used for proving invariance of local assertions
under assignments.

Lemma 1 (Local substitution). For arbitrary logical environments w and
instance local states (0,,,,,T) we have

[e/Ieom = [T AT AT

Wy Oinsts T E PIEST] il @, O [T L€l] T[T = IEl ") Fr -

The effect of assignments to instance variables is expressed on the global
level by the substitution P[E/z.#], which replaces in the global assertion P the
instance variables Z of the object referred to by z by the global expressions E.To
accommodate properly for the effect of assignments, though, we must not only
syntactically replace the occurrences z.z; of the instance variables, but also all
their aliases E'.x;, when 2z and the result of the substitution applied to E' refer
to the same object. As the aliasing condition cannot be checked syntactically,
we define the main case of the substitution by a conditional expression [4]:

(B'.z))[E)2.3) = (if E'[E/2.3 =z then E; else (E'[E/z.Z]).z; fi) .

The substitution is extended to global assertions homomorphically. We use this
substitution to express that a property defined in the global assertion language is
invariant under assignments. We will also use the substitution P[E/z.¢j] for arbi-
trary variable sequences 7 possibly containing logical variables, whose semantics
is defined by the simultaneous substitutions P[E, /z.7] and [E,, /], where & and
1 are the sequences of the instance and local variables of ¥, and E, and E, the
corresponding subsequences of E; if only logical variables are substituted, we
simply write P[E/i]. That the substitution accurately catches the semantical
update, and thus represents the weakest precondition relation, is expressed by
the following lemma:

Lemma 2 (Global substitution). For arbitrary global states o and logical
environments w referring only to values existing in o we have

[E'E)=q]s° = [E1S° ,and
w0 l=g PlE[2§] iff ' o' g P,

18 The proof system

where w' = w[F—[E]g 7] and o' = o[[]°.§—[E]S°].

To express a local property p in the global assertion language, we define the
substitution p[z/this] by simultaneously replacing in p all occurrences of the self-
reference this by the logical variable z, which is assumed to occur neither in p
nor in E. For notational convenience we view the local variables occurring in the
global assertion p[z/this] as logical variables. Formally, these local variables are
replaced by fresh logical variables. We will write P(z) for p[z/this], and similarly
for expressions. The main cases of the substitution are defined as follows:

this[z/this] = z
z[z/this] = z.x
u[z/this] = u
(32 (p))[2/this] = 32’ (p[2/this])
(32" € e(p))[2/this] = 32'((2' € e[z/this]) A p[z/this])
(32" C e(p))[z/this] = 32'((2' C e[z/this]) A p[z/this]) ,

where z # 2’ in the cases for existential quantification. The substitution replaces
all occurrences of the self-reference this by z, and transforms all occurrences of
instance variables x into qualified references z.x. For unrestricted quantifications
(32'(p))[2/this] the substitution applies to the assertion p. Local restricted quan-
tifications are transformed into global unrestricted ones where the relations €
and C are expressed at the global level as operators.

This substitution will be used to combine properties of instance local states
on the global level. The substitution [z/this] preserves the meaning of local as-
sertions, provided the meaning of this and the local variables 4 is matchingly
represented by w:

Lemma 3 (Lifting substitution). Let o be a global state, w and T a logi-
cal environment and local state, both referring only to values existing in o. Let
furthermore e and p be a local expression and a local assertion containing local
variables 4. If 7(@) = w(@) and z a fresh logical variable, then

[e[z/this][g” = [[e]]?a(w(Z)),T . and
w,o g plz/this] iff w,o0(w(z)),7=cp.

4 The proof system

This section presents the assertional proof system for reasoning about Javapr
programs, formulated in terms of proof outlines [17,9], i.e., where Hoare-style
pre- and postconditions [10,12] are associated with each control point. The proof
system has to accommodate for dynamic object creation, shared-variable concur-
rency, aliasing, method invocation, synchronization, and especially the monitor
concept.

The following section defines how to augment and annotate programs into
proof outlines, before Section 4.2 describes the proof method.

The proof system 19

4.1 Proof outlines

The definition of a complete proof system requires that we can formulate the
transition semantics of Javayr in the assertion language. As the assertion lan-
guage can reason about the local and global states, only, we have to augment
the program with fresh auxiliary variables to represent information about the
control points and stack structures within the local and global states.

Formally, assignments y := e of the program can be extended to multi-
ple assignments y, §auz := €, €que Dy inserting additional assignments to distinct
auxiliary variables ¥/, . Besides the above extension of already occurring assign-
ments, additional multiple assignments to auxiliary variables can be inserted at
any point of the program.

An important point of the proof system is the identification of the commu-
nicating objects and threads. Roughly speaking, the local state of the execution
of a method must represent information about the caller object to distinguish
self-calls from others. Additionally, information about its thread membership
and its position within the call stack is needed to detect local configurations in
caller-callee relationship and reentrant calls.

A local configuration is identified by the object in which it executes together
with a unique object-internal identifier. The uniqueness of the local identifier
conf is assured by the auxiliary instance variable counter, which is incremented
for each new local configuration. The callee receives the “return address” as
additional auxiliary formal parameter caller, given by the caller object together
with the identity of the calling local configuration.

We identify a thread by the object in which it has begun its execution, i.e.,
by the self-reference of the deepest local configuration in the thread’s stack. This
identification is unique since the start-method of an object can be invoked only
once, i.e., at most one thread can begin its execution in a single object. The caller
thread identity is handed over to the callee in the formal parameter caller_thread,
where the callee keeps his own identification in the local variable thread. Their
values agree for all method calls except for starting a new thread.

Besides auxiliary variables for thread identification to keep track of the con-
trol and information flow between local configurations, we need to capture mu-
tual exclusion and the monitor discipline. The instance variable lock of type
Object x Int + free and initial value free stores the identity of the thread who
owns the lock, if any, together with the number of reentrant synchronized calls
in the call chain. The instance variables wait and notified of type 20PiectxInt 5nq
initial value @) are the analogues of the wait and notified-predicates of the se-
mantics and store the threads waiting at the monitor, respectively those being
notified. Besides the thread identity, the number of reentrant synchronized calls
is stored. In other words, the wait and notified sets remember the old lock-value
prior to suspension which is restored when the thread becomes active again. To
be able to identify the receiver thread in a !signal-communication we addition-
ally use a local auxiliary variable partner of type 2°%¢t for the notify method.
The boolean instance variable started, finally, remembers whether the object’s

20 The proof system

start-method has already been invoked. All auxiliary variables are initialized as
usual, except the started-variable of the initial object which gets the value true.

The mentioned additional auxiliary variables are used in the program as fol-
lows. The formal parameter list of each method is extended by the auxiliary
parameters caller of type Object x Int for the return address and caller_thread of
type Object for the calling thread. At the beginning of its body, each method
sets thread := caller_thread in an auxiliary assignment except the main and the
start method which use thread := this, instead. Additionally, the beginning of
each method body increases counter by one, after its value is remembered in
the variable conf. The start-method is specific in setting started to true. In case
of synchronized methods, additionally the assigment lock := inc(lock) is added,
where the semantics of incrementing the lock is given as follows: [inc(lock)]z """
is (r(thread), 0) for o,,; (lock) = free, and (a,n + 1) for o, (lock) = (e, n). In-
versely, decrementing is given by [dec(lock)]z""" is free, when o, (lock) equals
(a,0) or free, and (a,n) when it equals (a,n + 1). This operator is used at the
end of synchronized method bodies to decrement the lock-value. Note that the
augmentation assures that the decrement operator is applied only in configura-
tions where the value of lock is not free. We included this case only for a total
function definition.

Matching with the method definition, each method call sends the values of
(this, conf) and thread in addition to the original parameters. The main-method
is initially executed with the parameters (nil,0) and ag, where g is the initial
object.

Invoking the wait-method gives the lock free which is represented by the as-
signment lock := free of the callee. The old lock-value is put into wait, and moved
to notified upon signalling. Finally, the notified thread can continue if it gets the
lock again, mirrored by the assignments notified := notified\get(notified, thread)
and lock := get(notified, thread) executed when returning from the wait-method.
Given a thread identity «, the get function retrieves the corresponding stored
lock value (a,n) from the set. Note that it is an invariant of the semantics that
the association is unique.

The above auxiliary assignments make observations about the control flow
available in the state space. To allow simultaneous observation, we enclose the
observed statement and the auxiliary assignment in a bracketed section. The
effect of assignments can be observed via multiple assginments, thus we use
bracketed sections only for communication and object creation. Introduced only
for the sake of verification, they do not influence the control flow and are exe-
cuted atomically without interleaving with other threads. Atomic execution of a
bracketed section, thought, does not mean that the actions inside are executed si-
multanously. Uniformely, the observation follows the observed actions, such that
the received values in a communication can be recorded. To uniformly refer to
communication statements together with their observations, we will sometimes
write (?m(@); 7 := €) to indicate that the assignment observes the reception of
a method call.

The proof system 21

Note that while object creation statements are enclosed in bracketed sections
which allow their observation, we do not introduce a specific augmentation as
for the communication statements.

The points between communication and observation in bracketed sections,
and those at the beginning and at the end of whole methods, are no control
points; we will call them auxiliary points.

Very generally, the specific auxiliary variables are needed to make the global
predicates of the semantics expressible in the assertion language. That the vari-
ables and the predicates match will be shown in Section 5.1 as part of the sound-
ness. The crucial predicate for object creation, the freshness-proviso, is already
expressible in the global assertion language by existential quantification over
existing objects. Therefore we do not need to prescribe a specific augmentation.

Note that in case of self-communication the effect of sender and receiver ob-
servations, executed in the same object, depends on the execution order. To as-
sure determinacy, we make the following arrangement: for communication, after
parameter passing, first the sender and than the receiver observation is executed.
For signalling, the observation of the notifier is followed by the observations of
the notified threads, which may contain assignments to local variables only.

In [2] we allowed that in a self-communication both the caller and the callee
may change the instance state. This complicated the proof system, especially
the interference freedom test. In this work we avoid this complication in that we
require that the observation of the caller side in a self-communication may not
change the values of instance variables. Formally, each assignment to instance
variables in the bracketed section of a method invocation ey.m(€) or its following

receive statement must have the form z := if ¢y = thisthen z else e fi. Invoking
the start-method by a self-call when the thread is already started is specific in
skip

that the caller is the only active entity (cf. rule CALL ;). In this case, it has to
be the caller that updates the instance state; the corresponding oberservation has
the form z := if ey = this A —started then xz else e fi. The values of the introduced
auxiliary variables are changed only in the bracketed sections as described above.

To specify invariant properties of the system, the augmented programs are
annotated by attaching local assertions to each control and auxiliary point. Be-
sides that, for each class ¢, the annotation defines a local assertion I. called
class invariant that expresses invariant properties of instances of the class.” Fi-
nally, the global invariant GI € GAss specifies properties of communication
between objects. As such, it should be invariant under object-internal computa-
tion. For that reason, we require that the values of instance variables occurring
in the global invariant may be changed only in the bracketed sections of object
creation, and in those of communication statements, i.e., sending or receiving
method call and return. Note that the global invariant is not affected by the
monitor signalling mechanism since this is object-internal communication.

" Note that the notion of class invariant commonly used for sequential object-oriented
languages differs from our notion: In a sequential setting, it is sufficient that class
invariant holds initially and is preserved by whole method calls, but not necessarily
in between.

22 The proof system

Definition 1 (Annotation, proof outline). An annotation of an augmented
program associates with each control and auziliary point a local assertion p €
LAss. Furthermore, it assigns to each class ¢ a class invariant I. € LAss which
may refer only to the instance variables of c. We require that pre(body,, .) =
post(body,, .) = I.. Finally, the program is assigned a global invariant GI €
GAss. We require that in the annotation no free logical variables occur, and
that for all qualified references E.x in GI with E € GEzp°®, all assignments
to x in class ¢ occur in bracketed sections of communication or object creation
statements. An augmented and annotated program prog, denoted by prog', is
called a proof outline.

For annotated programs, we use the standard notation {p} stm {¢q} to express
that p and ¢ are the pre- and postconditions of stm, i.e., the assertions in front
of and after stm, and write pre(stm) and post(stm) to refer to them.

The use of the specific auxiliary variables for the observation of communica-
tion is illustrated below. Figure 1 handles ordinary synchronized method calls,
except the predefined start- and monitor-methods. Non-synchronized methods
are treated analogously except that they do not change the lock value. The start
method (cf. Figure 2) additionally handles thread creation.

{p1}{e0.m(this,conf,thread,e) {p2}; 7 := €1){ps};
(receive wpei;{pa}; ¥s:= é);{ps}

{I.} sync m (caller,caller_thread,u) { {g2}

(conf := counter, counter := counter + 1, thread := caller_thread,
lock := inc(lock), 72 := &); {gs}

- {aa}

(return er:; {gs}lock := dec(lock), 3 := €3)

¥ L}

Fig. 1. Method call

The communication pattern of the wait- and notify-methods is observed as
shown in Figure 3.

4.2 Proof system

The proof system formalizes a number of wverification conditions which induc-
tively ensure that for each reachable configuration (T, o) and for each local con-
figuration (a,7,stm) in T the precondition of the statement stm is satisfied

The proof system

23

{I.} nsync start (caller,caller_thread) { {g2}

(conf := counter, counter := counter + 1, thread :

started := true, ¢ := &); {gs}
)
(return; {gs}¥s := €s)

Y L}

this,

Fig. 2. Start

{I.} nsync wait (caller,caller_thread) { {¢2}

(conf := counter, counter := counter + 1, thread :

wait := wait U {lock}, lock := free, 37'2 = é"2){q3}

(?signal; {qa}; §' == &'Mas}s
(returngeiock; {gs}lock := get(notified,thread),

caller_thread,

notified := notified \ get(notified,thread), 3 := &%)

F L}

{I.} nsync notify (caller,caller_thread) { {p2}

(conf := counter, counter := counter + 1, thread :

> := &){pa}

caller_thread,

(!signal;{ps} notified := notified U get(wait,partner),

wait := wait \ get(wait,partner), ¥:=é&){ps}
(return; {pe}ys :=€3)} {I.}

{I.} nsync notifyAll (caller,caller_thread) { {r:}

(conf := counter, counter := counter + 1, thread :

7y = éy){rs}

(!signal_all; {rs}notified := notified U wait,
wait := 0, ¢ :=&"){rs}

(return; {re}ys :=¢é5)} {I.}

caller_thread,

Fig. 3. Signalling

24 The proof system

and the class invariants and the global invariant hold. To cover concurrency
and communication, the verification conditions are grouped, as usual, into ini-
tial conditions, local correctness conditions, an interference freedom test, and a
cooperation test.

A proof outline is initially correct, if the precondition of the main statement
and the global invariant are satisfied in the initial configuration. Local correctness
ensures that local properties of a thread are invariant under its own execution.
This invariance can be guaranteed by local correctness conditions only if no
communication or object creation takes place, since their effect depends on the
communicated values and cannot be determined locally. They will be analyzed
in the cooperation test whose conditions are formalized in the global language.
The invariance of local properties of a thread that currently executes in a given
object can also be influenced by other threads executing in the same object which
possibly change the instance state. The corresponding verification conditions are
formalized in the interference freedom test.

Our proof method is modular in the sense that it allows for separate interfer-
ence freedom and cooperation tests. This modularity, which in practice simplifies
correctness proofs considerably, is obtained by disallowing the assignment of the
result of communication and object creation to instance variables. Clearly, such
assignments can be avoided by additional assignments to fresh local variables
and thus at the expense of new interleaving points.

Before specifying the verification conditions for a proof outline, we first fix
some auxiliary functions and notations. Let Init be a syntactical operator with
interpretation Init (cf. page 8). Given IVar, as the set of instance variables
of class ¢ and z € LVar®, then InitState(z) denotes the global assertion z #
nil A Aperver, 2. = Init(z), expressing that the object denoted by z is in its
initial instance state.

For readability, in the following definitions we will use the notation p o f
with f = [€/7] for the substitution p[€/g]; we use a similar notation for global
assertions. Note that the substitution binds stronger than the logical operators
A and —.

Finally, arguing about two different local configurations makes it necessary
to distinguish between their local variables possibly having the same names; in
such cases we will rename the local variables in one of the local states. Will use
primed assertions p’ to denote the given assertion p with every local variable u
replaced by a fresh one u/, and correspondingly for expressions.

4.2.1 Initial correctness A proof outline is initially correct, if the precon-
dition of the main statement is satisfied by the initial instance and local states
after the execution of the observation at the beginning of the main-method.
Furthermore, the global invariant must be satisfied by the initial global state.

Definition 2 (Initial correctness). A proof outline is initially correct, if

Ec pre(stm) o fobs © finit (1)
Eg Vz(InitState(z) AV2'(z' =nilVz =2') = GI o fZ,, 0 fZ.1) (2)

The proof system 25

where body i, = (Tmain(@); J> := &); stm is the body and § the local and in-
stance variables of the main-method, z is of the type of the main class, and
2" € LVar®®€t, Furthermore,

finit = [nil, (this, 0)/callerobj, id][true/started][Init(7) /7] fobs = [é:%/gjg]
Zw = [nil, (z,0)/callerobj, id][true/ z.started|[Init(¥) /2.9] fZ,, = [E2(2)/2.9>] .

4.2.2 Local correctness A proof outline is locally correct, if the usual ver-
ification conditions [6] for standard sequential constructs hold. Especially, the
precondition of an ordinary assignment, as given in the proof-outline, must im-
ply its postcondition after the execution of the assignment (cf. Equation (3)).
Besides that, local correctness requires that all assertions of a class imply the
class invariant.

Definition 3 (Local correctness). A proof outline is locally correct, if for all
assignments {p1 }7 := €{pa2} outside bracketed sections,

IZE D1 _>p2°fass) (3)
with fuss = [€/7], and for all assertions p in class ¢ with class invariant I,
IZL', p— Ic . (4)

Note that we have no local verification conditions for assignments in bracketed
sections. The postconditions of such statements express assumptions about the
communicated values. These assumptions will be verified in the cooperation test.

Other threads concurrently executing in the same object may influence or
interfere with the invariance of the local assertions. This is covered in the inter-
ference freedom test.

4.2.3 The interference freedom test For inductivity, it must be shown
that local assertions are invariant under computation steps in which they are not
involved. The resulting proof obligations constitute the interference freedom test.
Since we disallow qualified reference to instance variables in Javayr, we only have
to deal with the invariance under execution within the same object. Affecting
only local variables, communication and object creation do not change the state
of the executing objects. Thus we only have to take assignments into account.
In the following let p and ¥ := € be an assertion and an assignment occurring
in the same class. Using the specific auxiliary variables, we next formalize the
conditions when p has to be invariant under the assignment, namely if § := € is
executed independently of p.

If they belong to the same thread, the only assertions endangered are those
at control points waiting for a return value earlier in the current execution stack.
In other words, an assignment belonging to a reentrant code segment can affect
the precondition of a receive statement whose execution is suspended earlier in
the same call chain. The assignment belonging to the matching return statement,
however, need not be considered. To express this kind of interference, we define
waits_for_ret(p, ¥ := €) by

26 The proof system

— conf’ < conf, if p is the precondition of a receive statement and § := € is not
in the bracketed section of a return statement;

— conf’ < conf(caller) if p is the precondition of a receive statement and i := &
is in the bracketed section of a return statement and where conf(caller) is
the second component of the caller-value;

— false, otherwise.

If the assertion and the assignment belong to different threads, the assignment
cannot interfere with p if they belong to a matching communication pair. Note
that observations of 7signal do not change the instance state, and thus inter-
ference freedom is trivial. So we only have to exclude matching communication
where the assignment belongs to the sending part. In other words, the precondi-
tion of a ?signal statement needs not to be shown invariant under the observation
of a matching !signal or Isignal_all. To capture this condition, we define the as-
sertion gets_signalled(p, ¥ := €) as follows.

— partner = £, if p is the precondition of a ?signal statement and the assignment
is from the bracketed section of a Isignal;

— true, if p is the precondition of a 7signal statement and the assignment is in
the bracketed section of a !signal_all;

— and false otherwise.

Collecting the above two cases, we define for assertions p at control points and
assignments 4 := € in the same class:

interleavable(p, i/ := €) := thread = thread’ — waits_for_ret(p, 7 := €) A
thread # thread’ — —gets_signalled(p, 7 := €) .

Using this predicate the interference freedom test is formulated below. Remem-
ber that ¢’ denotes ¢ with all local variables u replaced by some fresh local
variables u/'.

Definition 4 (Interference freedom). A proof outline is interference free, if
for all classes c, all assignments {p}y := € and assertions q at control points in
C}

=z pAq Ainterleavable(q, 7 := &) — ¢’ o fass , (5)

with fass = [2/7).

4.2.4 The cooperation test Whereas the interference freedom test assures
invariance of assertions under steps in which they are not involved, the coop-
eration test deals with inductivity for communicating partners, assuring that
the preconditions of the involved bracketed sections imply their postconditions
after the common step. We start with the cooperation test for notification (cf.
Figure 3).

Since signalling takes place within a single object, the cooperation test is
formulated in the local assertion language. The effects of the observations are

The proof system 27

represented as before by substitutions. Note that the order in which the syn-
tactic substitutions are applied is reverse compared with the order in which the
corresponding assignments update the state. In addition, we substitute the vari-
able partner to fix the identity of the receiving thread. Also broadcast signalling
via Isignal_all can be handled pairwise for each of the receivers together with the
sender, as we require that the receiver side may not change the instance state.
If there is no thread to be signalled, the corresponding observation is skipped.

The soundness of the proof system requires, that the precondition of an
observation, used in the interference freedom test, describes the state in which
the assignment is executed. Therefore, we additionally have to show that these
assertions are valid after communication.

Definition 5 (Cooperation test: Notification). A proof outline satisfies the
cooperation test for notification, if the following conditions hold:

1. SIGNAL For all classes ¢ and statements {p; }(!signal; {p2}91 := &){ps} and
{1 }(?signal; {g2}9> := €){gs} inc,

|:,Cp1/\q11 — (p2/\qg)Ofcomm/\(p3/\qé)°fob32Ofobslofcomm;(ﬁ)

where feomm = [{thread'}/partner], fors: = [€1/71], and fopse =[5/

2. SIGNALALL For statements {p; }{!signal_all; {p2}71 := €){ps} the above con-
dition holds with fcomm s the identity function.

3. SIGNALgyp For statements {p1 }{!signal; {p2}71 := &){ps} Equation(6) must
hold with the additional antecedent wait = 0, where ¢ = g2 = q3 = true,
feomm = [D/partner], and fopse is the identity function. For !signal_all, the
same s required with f.omm as the identity function.

We continue with the cooperation test for communication; for the corre-
sponding augmentation see Figure 1. Since different objects may be involved,
the corresponding cooperation test is formulated in the global assertion lan-
guage. Consequently the local properties and expressions are expressed in the
global language using the lifting substitution. To avoid name clashes between
local variables of the partners, we rename those of the callee. Besides ensuring
invariance of the global invariant over bracketed sections, it specifies conditions
under which the local properties of the communicating partners are preserved.

In the following definition, the logical variable z denotes the object calling a
method and 2’ refers to the callee. In the global state prior to the communication,
we can assume that the global invariant and the preconditions of the commu-
nicating statements hold. In the case of method invocation, the precondition of
the callee is given by its class invariant, as defined in the annotation. Dually for
the postcondition for a bracketed section of a return. That the two statements
indeed represent communicating partners and especially that the communication
is enabled is captured in the assertion communicating, which depends on the type
of communication. For instance, in case of synchronized method invocation, the
lock of the callee object has to be free, or owned by the caller, which is expressed
by z’.lock = free V thread(z'.lock) = thread, where thread is the caller-thread and
thread(a,n) = a.

28 The proof system

Similarly to notification, the cooperation test assures under the above as-
sumptions, that the postconditions of the communicating bracketed sections are
valid after communication and observation. Furthermore, the preconditions of
the observations must hold immediately after the communication. As before,
communication and state updates of the observations are captured by substi-
tutions. Remember that method invocation also hands over the return address,
which allows to determine matching communication pairs for return. . Note that
the actual parameters do not contain instance variables, i.e., their interpretation
does not change during the execution of the method body. Therefore, the actual
parameters can be used not only to logically capture the conditions at the entry
of the method body, but at the exit of the method body, as well.

The global invariant GI is not allowed to refer to instance variables whose
values are changed outside bracketed sections. Consequently, it will be automat-
ically invariant under the execution of statements outside bracketed sections.
For the bracketed sections, however, the invariance must be shown as part of the
cooperation test. The global invariant must hold after both communication and
the accompanying observations have been performed.

Invoking the start-method of an object whose thread is already started does
not have communication effects. Neither has returning from a start-method or
from the first execution of the main-method.

Let again p’ denote the assertion p with every local variable u replaced by
a fresh one v', and similarly for expressions. As already mentioned, we use the
shortcuts P(z) for p[z/this], Q'(z") for ¢'[2'/this], and similarly for expressions,
where local variables are viewed on the global level as logical ones.

Definition 6 (Cooperation test: Communication). A proof outline satis-
fies the cooperation test for communication, if

Eg GI A Pi(2) A Q' (2") A communicating A z # nil A 2’ # nil — (7
(P2 (Z) A Q;(zl)) o fcomm A (GI A P3 (z) A QQ(ZI)) o fobs:? o fobsl o fcomm

holds for distinct fresh logical variables z € LVar® and z' € LVar®, in the
following cases:

1. (a) CALL: For all statements {pi1}{eo.-m(€);{p2}ih = €){ps} in class c
with ey € Expg, where method m ¢ {start,wait, notify, notifyAll} of ¢
is synchronized with body {q1}{(?m(@); {g2}7> := &); {gs}stm and local
variables U except the formal parameters. The assertion communicating
is given by Eo(z) = z' A (2'.lock = free V thread(z'.lock) = thread). Fur-
thermore, feomm = [E(2), Init(@) /@, 7], fors1 = [E1(2)/2-01], fobse =
[(2') /2 47%). If m is not synchronized, 2'.Jock = free Vthread (2’ .lock) =
thread in communicating is dropped.

(b) CALLmonitor: For m € {wait, notify, notifyAll}, communicating given by
Eq(z) = 2’ A thread(z'.lock) = thread.
(¢) CALLgters: For m = start, communicating given by Eo(2) = 2' A—2' .started.

The proof system 29

(d) CALLE™, : Form = start, additionally, (7) must hold with communicating
given by Eo(z) = 2’ A 2'.started, ¢2 = g3 = true, and feomm and fopse
are the identity functions.

2. (a) RETURN: For all {eg.m(8); 71 := &1); {p1}{receive ures; {p2}7a :=) {ps}
occurring in ¢ with ey € Expgl , such that method m of ¢ has the return
statement {q; }(return e,es; {g2}73 := €){qs}, and formal parameter list
@, Equation (7) must hold with communicating given by Eo(z) = 2'Ad' =
E(z), and where feomm = [Epey(2')/ured], fovss = [E3(')/2' 5], and
fobs? = [E4 (Z)/Zg:l]

(b) RETURN 4t For {q1 }{returngesock; {q2 143 := €){qs} in a wait method,
communicating is Eo(z) = 2’ A@ = E(z) A 2" lock = free.

(¢) RETURNqrt: For {qgi1}(return; {g2}¥3 := &){qs} occuring in the main
method or in a start method, py = ps = p3 = true, communicating =
(id' = (2',0)), and furthermore feomm and fopso the identity function.

Besides method calls and return, the cooperation test needs to handle object
creation, taking care of the preservation of the global invariant, the postcondi-
tion of the new-statement and its bracketed section, and the new object’s class
invariant. We can assume that the precondition of the object creation statement
and the global invariant hold in the configuration prior to the instantiation. The
extension of the global state with a freshly created object is formulated in a
strongest postcondition style, i.e., it is required to hold immediately after the in-
stantiation. We use existential quantification to refer to the old value: 2’ of type
LVar'stObiect represents the existing objects prior to the extension. Moreover,
that the created object’s identity stored in v is fresh and that the new instance
is properly initialized is captured by the global assertion Fresh(z’,u) defined
as InitState(u) Au & 2’ AVu(v € 2/ Vv = u), where InitState(u) is as defined
above. To express that an assertion refers to the set of existing objects before
the new-statement, we need to restrict any existential quantification to range
over objects from 2', only. So let P be a global assertion and 2’ € LVar'stObiect
a logical variable not occurring in P. Then P | 2’ is the global assertion P with
all quantifications 3z(P’) replaced by Jz(obj(z) C 2’ A P'), where obj(v) denotes
the set of objects occurring in the value v, formally

0 if v e Val® U val™
R B U if v e, Vals,
obj(v) = obj(v1) U obj(v2) if v = (vi,v2)€U;, 4, Valtixt:
Uviev Ob](vz) if ve Ut ValL;itlt]

The following lemma formulates the basic property of the projection operator:
Lemma 4. Assume a global state o, an extension o' = o[a s a5 for some
a € Val’, a ¢ dom(o), and a logical environment w referring only to values
existing in 0. Let v be the sequence consisting of all elements of |, domy; (o).
Then for all global assertions P and logical variables z' € LVar"stOPiect not oc-

curring in P,

w,o Eg P iff w[z' —v],0' Eg Pl 2.

30 Soundness and completeness

Thus the predicates GI | 2' and Ju(pre(u := new®)[z/this]) | 2z’ express that
the global invariant and the precondition of the object creation statement hold
for the old value of u prior to the creation of the new object. This leads to the
following definition of the cooperation test for object creation:

Definition 7 (Cooperation test: Instantiation). A proof outline satisfies
the cooperation test for object creation, if for all classes ¢’ and statements

{p1}(u := new?; {p2}7 := €){ps} in '

=g 2 # nil A 32/ (Fresh(/,u) A (GT A Bu(Py(2))) L #') = 8)
Py(2) NI (u) A (GI A P3(2)) o fobs

with z € LVar® and z' € LVar"stOPet fresh | E(z) = élz/this], and where
fovs = [E(2)/2.4).

5 Soundness and completeness

This section contains soundness and completeness of the proof method of Sec-
tion 4.2. Given a program together with its annotation, the proof system stipu-
lates a number of induction conditions for the various types of assertions and pro-
gram constructs. Soundness for the inductive method means that for a proof out-
line satisfying the verification conditions, all configurations reachable in the op-
erational semantics satisfy the given assertions, completeness conversely means
that if a program does satisfy an annotation, this is provable. For convenience, let
us introduce the following notations. Given a program prog, we will write @prog
or just ¢ for its annotation, and write prog |= ¢, if prog satisfies all requirements
stated in the assertions:

Definition 8. Given a program prog with annotation ¢, then prog |= ¢ iff for
all reachable configurations (T, o) of prog, for all (a,7,stm) € T, and for all
logical environments w referring only to values existing in o:

1. w,o(a), T |=¢ pre(stm), and
2. w,0 =g GI .

Furthermore, for all classes ¢, objects 8 € dom®(a), and local states 7':
3. w,a(B), 7 Ec I, .

For proof outlines, we write prog' - ' iff prog' satisfies the verification condi-
tions of the proof system.

5.1 Soundness

Soundness, as mentioned, means that all reachable configurations do satisfy their
assertions for an annotated program that has been verified using the proof con-
ditions. Soundness of the method is proved by a straightforward, albeit rather
tedious induction on the computation steps.

Soundness and completeness 31

Before embarking upon the soundness formulation and its proof, we need
to clarify the connection between the original program and proof outline, i.e.,
the one decorated with assertions, extended by auxiliary variables and sprinkled
with bracketed sections. The transformation is done for the sake of verification,
only, and as far as the un-augmented portion of the states and the configurations
is concerned, the behavior of the original and the transformed program are the
same.

To make the connection between original program and the proof outline one
precise, we define a projection operation | prog, that jettisons all additions of the
transformation. So let prog’ be a proof outline for prog, and (T", ') a global con-
figuration of prog'. Then o' | prog is defined by removing all auxiliary instance
variables from the instance state domains. For the set of thread configurations
T' | prog is given by restricting the domains of the local states to non-auxiliary
variables and removing all annotations, augmentations, and bracketed sections.
The following lemma expresses that the transformation does not change the
behavior of programs:

Lemma 5. Let prog' be a proof outline for program prog. Then (T, o) is a reach-
able configuration of prog iff there exists a reachable configuration (T',c') of
prog’ with {T" | prog,o’ | prog) = (T, o).

The augmentation introduced a number of specific auxiliary variables that
reflect the predicates used in the semantics. That the semantics is faithfully
represented by the variables is formulated in the following lemmas.

Lemma 6 (Identification). Let (T,0) be a reachable configuration of a proof
outline program. Then

1. for all stacks & and & in T and for all local configurations (o, T,stm) € &
and (o, 7', stm’) € & we have T(thread) = 7/ (thread) iff £ = ¢, and
2. for each stack (ag, 7o, Stmg) - . . (Qn, Th, Stmy) in T and indices i < j,
(a) 7;(thread) = ap;
(b) a; = a; implies T;(conf) < 7;(conf),
(c) Tj(caller) = (aj_1,7j—1(conf)), and
(d) 7j(caller_thread) = 7;_1 (thread).

Lemma 7 (Wait, Notify). For all reachable (T,0) and a € dom(o) we have

1. £ = (ag,70,8tmo) 0 & € wait(T,a) iff (awo,n) € o(a)(wait) where n =
{(as, T, stm;) € €| stm; synchr.}| —1,

2. £ = (ao,70,8tmg) o &' € notified(T,a) iff (ag,n) € o(a)(notified) where
n = |{(ou, 7i, stm;) € €| stm; synchr.}| — 1.

Lemma 8 (Lock). Let {T,0) be a reachable configuration of a proof outline,
a € dom(o) and & = (g, 7o, stmg) 0 &' € T. Then

1. —owns(T, a) iff o(a)(lock) = free;

32 Soundness and completeness

2. owns(§,a) iff o(a)(lock) = (ag,n) withn = |{(a, T, stm) € & | stm synchr.}|—
1

Lemma 9 (Started). For all reachable configurations {T,o) of a transformed
program and all objects a € dom (o), we have started(T, a) iff o(c)(started).

Let prog be a program with annotation ¢, and prog’ a a corresponding proof
outline with annotation ¢'. Let GI' be the global invariant of ¢', I’ denote its
class invariants, and for an assertion p of ¢ let p’ denote the assertion of ¢’
associated with the same control point. We write = ¢’ — ¢ iff g GI' — GI,
Ec I. — I, for all classes ¢, and =, p' — p, for all assertions p of ¢ associated
with some control point. To give meaning to the auxiliary variables, the above
implications are evaluated in the context of states of the augmented program.
The following theorem states the soundness of the proof method.

Theorem 1 (Soundness). Given a proof outline prog’ with annotation @preg .

If prog' - Pprog' then prog’ = Pprog’ -

The soundness proof is basically an induction on the length of computation,
simultaneous on all three parts from Definition 8. Theorem 1 is formulated for
reachability of augmented programs. With the help of Lemma 5, we immediately
get:

Corollary 1. If prog' b ¢prog and |= Qprogt = Qprog, then prog = ©prog.

5.2 Completeness

Next we conversely show that if a program satisfies the requirements asserted
in its proof outline, then this is indeed provable, i.e., then there exists a proof
outline which can be shown to hold and which implies the given one:

Vprog. prog |= ¢prog = 3prog’. prog’' b pprog A E Oprogt = Pprog -

Given a program satisfying an annotation prog = ¢preq, the consequent can be
uniformly shown, i.e., independently of the given assertional part ¢prog, by in-
stantiating ¢prog to the strongest annotation still provable, thereby discharging
the last clause = @progt — @prog- Since the strongest annotation still satisfied
by the program corresponds to reachability, the key to completeness is to

1. augment each program with enough information, to be able to

2. express reachability in the annotation, i.e., annotate the program such that
a configuration satisfies its local and global assertions exactly if reachable
(see Definition 10 below), and finally

3. to show that this augmentation indeed satisfies the verification conditions.

Soundness and completeness 33

We begin with the augmentation, using the transformation from Section 4.1
as starting point, where the programs are equipped with bracketed sections and
augmented with specific auxiliary variables.

Now to make visible within a configuration whether or not it is reachable,
the standard way is to add information into the states about the way it has
been reached, i.e., the history of the computation leading to the configuration.
It is recorded in history variables, containing enough information to distinguish
reachable from unreachable configurations.

The assertional language is split into a local and a global level, and likewise
the proof-system is tailored to separate local proof obligations from global ones
to obtain a modular proof system. The history will be recorded in instance
variables, and thus each instance can keep track only of its own past. To mirror
the split into a local and a global level in the proof system, the history per
instance is recorded separately for internal and external behavior. The sequence
of internal state changes local to that instance are recorded in the local history
and the external behavior in the communication history.

The communication history keeps information about the kind of communi-
cation, the communicated values, and the identity (both object and local con-
figuration identities) of the communication partners involved. For the kind of
communication, we distinguish as cases object creation, ingoing and outgoing
method calls, and likewise ingoing and outgoing communication for the return
value. We use the set of constants {new, call, called, return, receive} for this pur-
pose. Note in passing that the information stored in the communication history
matches exactly the information needed to decorate the transitions in order to
obtain a compositional variant of the operational semantics of Section 2.3.2. See
[1] for such a compositional semantics.

To facilitate reasoning, we introduce an additional auxiliary local variable
loc, which stores the current control point of the execution of a thread. Given
a function which assigns to all control points unique location labels, we extend
each assignment with the update loc := [, where [is the label of the control point
after the given occurrence of the assignment. Also bracketed sections which do
not contain assignments are extended with the update. We write [= stm if [
represents the control point in front of stm in a method body stm'; stm.

Definition 9 (Augmentation with histories). Each class is further extended
by two auziliary instance variables hinse and hoomm, both initialized to the empty
sequence. They are updated as follows:

1. Fach assignment ¥ := € outside bracketed sections or in bracketed sections
of "m (i), return ey, !signal, !signal_all, and new in a class ¢ is extended with

hinst := hinst © ((fa ﬁ)[g/m) s

where T are the instance variables of class ¢ containing also hcomum but with-
out hinst, and @ are the local variables. Bracketed sections of eg.m(€) and
its subsequent receiveu,; statement with auziliary assignment ¥ := € get

34

Soundness and completeness

extended with the assignment
hinst 1= if eg = thisthen h;, ;s else hjpg © ((.’f, U)[é/:lj]) R

instead.

. Every bracketed section of 7m(i), return ey, and new is extended with

hcomm = hcomm © ((kind, sender, receiver, values)[€/7]) .

Bracketed sections of eg.m(€) and its subsequent receive statement update
hcomm to

if eg = thisthen h omm else heomm o ((kind, sender, receiver, values)[€/7]) .

The value of kind is from the set {new®,!m,?m,!return,? return} for brack-
eted sections creating an object of type c, sending !m or receiving Tm a
method call, !return for returning, and ? return for receiving a return value.
The value of sender is given by the sender object and sender thread’s iden-
tity, i.e., (this,thread) for method invocation, return, and object creation,
(eo,thread) for receive, and (callerobj, caller_thread) for bracketed sections of
?m(&), where callerobj is the first component of the variable caller. Con-
versely, the value of receiver is (this, thread) for ?m (@) and receive, (e, thread)
for the invocation of methods different from start, (eg, €9) for the invocation
of start, (callerobj, caller_thread) for return, and (u,nil) for object creation
u = new®. Finally, values are the actual and formal parameter lists for
method invocation, and the return value for return and receive statements;
for object creation, values is empty.

In the update of the history variable h;,s:, the expression (Z, @)[€/¢] identifies

the active thread by the local variables thread and conf, and specifies its instance
local state after the execution of the assignment. Note that especially the values
of the auxiliary variables introduced in the augmentation are recorded in the
history h;,s:. In the following we will also write (o,,,,,7) when referring to
elements of hy,g;.

Next we introduce the annotation for the augmented program. In the follow-

ing let w € 02, 0,5y € Xinst, and 7 € X, with a = o, (this).
Definition 10 (Reachability annotation).

1.

2.

3.

w,o =g GI iff there exists a reachable (T,d') such that dom (o) = dom(c'),

and for all a € dom(c), o(a)(hcomm) = ' (@) (hcomm)-

For each class ¢, let w,0,,,,T = 1. iff there exists o reachable (T, o) such

that 0(a) = 0,61 -

(a) For assertions at control points, w,0,,.,T Ec pre(stm) iff there is a
reachable (T, o) with o(a) = 0,5 and (a, T, stm;stm') € T.

(b) W,0;6:,T =i pOst(eg.m(@)) iff there is a reachable (T, o) with o(a) =
Oinst> and a local configuration (o, T, (eg.m(@); ¥ := €); stm) € T which
is enabled to execute. The postconditions of return e, !signal_all, and
?signal statements are analogous.

Soundness and completeness 35

(c) W,0,,6,T Er post(lsignal) iff there is a reachable (T,c) with o(a) =
Oinst> a0d a local configuration (o, 7', stm) € T which is enabled to signal
the thread of 8 with T = 7'[partner —(8,n)].

(d) w,0,,4,T Er post(receive uye) iff there is a reachable (T, o) with o(a) =
Oinsts 00d a local configuration (o, 7', (receive ure; i := €); stm) € T with
T = 7' [Upet +> Upet] which is enabled to receive the value vye;.

(e) W,0;net,T = post(u := new) iff there is a reachable (T, o) with (o) =
Oinst> aNd o local configuration (o, 7', (u := new;§ := &);stm) € T with
T = 7'[u+> B] which is enabled to create the object 3.

(f) w, 00,7 Er post(?m(d)) iff there is a reachable {T,o) with o(a) =
Oinst» 11 that the invocation of method m of a is enabled with parameters
7(@); furthermore, 7(0) = Init(7).

(9) pre(?m(a@)) = post(body,, .) = I. for each class c and method m of c.

It can be shown that these assertions are expressible in the assertion language
[21]. The augmented program together with the above annotation build a proof
outline that we denote by prog’.

What remains to be shown for completeness is that the proof-outline prog’
indeed satisfies the verification conditions of the proof system. Initial and local
correctness are straightforward.

Completeness for the interference freedom test and the cooperation test are
more complex, since, unlike initial and local correctness, the verification condi-
tions in these cases mention more than one local configuration in their respective
antecedents. Now, the reachability assertions of prog’ guarantee that, when sat-
isfied by an instance local state, there exists a reachable global configuration
responsible for the satisfaction. So a crucial step in the completeness proof for
interference freedom and the cooperation test is to show that individual reach-
ability of two local configurations implies that they are reachable in a common
computation. This is also the key property for the history variables: they record
enough information such that they allow to uniquely determine the way a con-
figuration has been reached; in the case of instance history, uniqueness of course,
only as far as the chosen instance is concerned. This property is stated formally
in the following local merging lemma.

Lemma 10 (Local merging lemma). Let (T1,01) and (T2,03) be two reach-
able global configurations of prog' and (a,T,stm) € Ty with a € dom(o1) N
dom(o2). Then o1(a)(hinst) = oa(a)(hinst) tmplies (a, T, stm) € Ts.

For completeness of the cooperation test, connecting two possibly different
instances, we need an analogous property for the communication histories. Argu-
ing on the global level, the cooperation test can assume that two control points
are individually reachable but agreeing on the communication histories of the
objects. This information must be enough to ensure common reachability. Such a
common computation can be constructed, since the internal computations of dif-
ferent objects are independent from each other, i.e., in a global computation, the
local behavior of an object is interchangeable, as long as the external behavior
does not change. This leads to the following lemma:

36 Soundness and completeness

Lemma 11 (Global merging lemma). Let (T1,01) and (T, 03) be two reach-
able global configurations of prog’ and a € dom(o1)Ndom(o2) with o1 (a)(hcomm) =
02(@)(hcomm). Then there exists a reachable configuration (T, o) with dom(c) =

dom(o3), o(a) = o1(a), and a(B8) = 02(B) for all B € dom(o2)\{a}.

Note that together with the local merging lemma this implies that all local
configurations in (T, 01) executing in « and all local configurations in (T%, o2)
executing in 3 # « are contained in the commonly reached configuration (T, o).

This brings us to the last result of the paper:

Theorem 2 (Completeness). Given a program prog, the proof outline prog’
satisfies the verification conditions of the proof system from Section 4.2.

References

1. E. Abrah4m-Mumm, F. de Boer, W.-P. de Roever, and M. Steffen. Composi-
tional operational semantics of Javay 7. Technical Report TR-ST-02-2, Lehrstuhl
fiir Software-Technologie, Institut fiir Informatik und praktische Mathematik,
Christian-Albrechts-Universitit zu Kiel, May 2002.

2. E. Abrahd4m-Mumm, F. de Boer, W.-P. de Roever, and M. Steffen. Verification for
Java’s reentrant multithreading concept. In Nielsen and Engberg [16], pages 4-20.
A longer version, including the proofs for soundness and completeness, appeared
as Technical Report TR-ST-02-1, March 2002.

3. J. Alves-Foss, editor. Formal Syntaz and Semantics of Java. LNCS State-of-the-
Art-Survey. Springer-Verlag, 1999.

4. P. America and F. de Boer. Reasoning about dynamically evolving process struc-
tures. Formal Aspects of Computing, 6(3):269-316, 1993.

5. G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley, 2000.

6. K. R. Apt. Ten years of Hoare’s logic: A survey — part I. ACM Transactions on
Programming Languages and Systems, 3(4):431-483, Oct. 1981.

7. K. R. Apt, N. Francez, and W.-P. de Roever. A proof system for communicating
sequential processes. ACM Transactions on Programming Languages and Systems,
2:359-385, 1980.

8. P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based structural
operational semantics of multi-threaded Java. In Alves-Foss [3].

9. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositional and Non-
compositional Proof Methods. Cambridge University Press, 2001.

10. R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proc. Symp. in Applied Mathematics, volume 19, pages 19-32, 1967.

11. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

12. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576-580, 1969. Also in [13].

13. C. A. R. Hoare and C. B. Jones, editors. Essays in Computing Science. Interna-
tional Series in Computer Science. Prentice Hall, 1989.

14. M. Huisman. Java Program Verification in Higher-Order Logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, 2001.

Soundness and completeness 37

15.

16.

17.

18.

19.

20.

21.

22.

23

G. M. Levin and D. Gries. A proof technique for communicating sequential pro-
cesses. Acta Informatica, 15(3):281-302, 1981.

M. Nielsen and U. H. Engberg, editors. Proceedings of Foundations of Software
Science and Computation Structures (FoSSaCS’02), volume 2303 of Lecture Notes
in Computer Science. Springer-Verlag, Apr. 2002.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6(4):319-340, 1976.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In
Swierstra [20], pages 162-176.

R. Stark, J. Schmid, and E. Borger. Java and the Java Virtual Machine. Springer-
Verlag, 2001.

S. Swierstra, editor. Proceedings of the 8th European Symposium on Programming
(ESOP ’99), volume 1576 of Lecture Notes in Computer Science. Springer, 1999.
J. V. Tucker and J. I. Zucker. Program Correctness over Abstract Data Types, with
Error-State Semantics, volume 6 of CWI Monograph Series. North-Holland, 1988.
D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side
effects and virtual methods revisited. submitted for publication, 2002.

J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling
With Uml. Object Technology Series. Addison-Wesley, 1999.

