
UNIVERSITY OF OSLO
Department of Informatics

Evaluation of TCP
retransmission
delays

Master thesis

Espen Søgård Paaby (espensp)

24th May 2006

i

Abstract

Many applications today (e.g., game servers and video streaming servers)
deliver time-dependent data to remote users. In TCP based systems, re-
transmission of data might give high and varying delays. In applications
with thin data streams (e.g., interactive applications like games), the inter-
action between game players raises stringent latency requirements, and it is
therefore important to retransmit lost or corrupted data as soon as possible.

In the current version of the Linux kernel (2.6.15), several variations
of TCP are included. In this thesis, these variations are compared, tested
and evaluated with respect to retransmission latency in different and vary-
ing RTT and loss scenarios. The variations are tested for thin and thick
data streams, respectively. Thick streams transmit as much data as pos-
sible, while the thin streams only need to transfer a small amount of data
every once in a while, thus potentially having considerable time intervals
between the sending of a few packets.

Due to poor performance experienced for the TCP variations in the thin
stream part of the tests, several enhancements are proposed, implemented
and tested for use in thin stream scenarios. The loss detection mechanisms
of TCP do not perform adequately in a thin stream scenario, resulting in
high and varying retransmission delays, something which might violate
the stringent latency requirements of interactive games. The implemented
enhancements provide considerable improvements in the retransmission
delay, reducing both the level and the variation of the retransmission delay
values.

ii

Contents

1 Introduction 1

1.1 Background . 1
1.2 Problem definition . 2
1.3 Outline . 2

2 The TCP protocol variations 3
2.1 TCP Reno . 4

2.1.1 TCP New Reno . 5
2.2 TCP Vegas . 6
2.3 TCP BIC . 8
2.4 TCP SACK . 10

2.4.1 TCP DSACK . 10
2.4.2 TCP FACK . 11

2.5 TCP Westwood . 11
2.6 High-speed TCP . 12
2.7 Scalable TCP . 13
2.8 H-TCP . 14
2.9 TCP Hybla . 15
2.10 Summary . 16

2.10.1 Characteristics of the TCP variations 16

3 Testing of the different TCP variations 20

3.1 Test configurations . 21
3.1.1 The testbed . 21
3.1.2 Emulator and simulation settings 21
3.1.3 Description and justification of the network types sim-

ulated in the tests . 24
3.2 Test results and evaluation . 25

3.2.1 Evaluation of the TCP variations for thick streams . . 26
3.2.2 Evaluation of the TCP variations for thin streams . . 38

3.3 Summary . 49

iii

4 Proposed enhancements 50

4.1 Removal of the exponential backoff mechanism 51
4.2 Implementation of "thin stream Fast Retransmit" 52

4.2.1 The Vegas modification 52
4.2.2 Modified Fast Retransmit for thin stream use only . . 53

4.3 Fill every packet sent (or fill each retransmitted packet) . . . 54
4.3.1 Piggybacking in original packets (Fill every packet sent) 54
4.3.2 Piggybacking in retransmitted packets (Fill every re-

transmitted packet) . 56
4.4 Summary . 56

5 Implementation and testing of the proposed enhancements 58

5.1 Removal of the exponential backoff mechanism 59
5.2 Modified Fast Retransmit for thin stream use only 60
5.3 Piggybacking in retransmitted packets (Fill every retrans-

mitted packet) . 62
5.4 Testing and evaluation of the implemented enhancements . 64

5.4.1 Test layout . 65
5.4.2 Test of the selected TCP variations with the earlier

test configuration . 67
5.4.3 Anarchy Online testing 69
5.4.4 Thin stream testing with dupACKs 73
5.4.5 Evaluation of the implemented enhancements 76

5.5 Summary . 79

6 Conclusion, future work 81

6.1 Conclusion . 81
6.2 Future work . 83

iv

Acknowledgments

First, I would like to thank my supervisors, Carsten Griwodz and Pål
Halvorsen, for keeping up with all my bickering, patiently answering all
the questions and providing invaluable feedback, as well as providing fa-
cilities, machines and useful tools.

Next, I would like to thank my fellow student, Jon Pedersen, for all the
long discussions (mostly football, but some technical), we have had during
this semester. The technical ones have been quite beneficial for the final
result.

Thanks to Rick Jones for providing clarifying feedback on various Netperf
issues.

And finally, thanks to my friends and family for their moral support.

v

Chapter 1

Introduction

1.1 Background

In many applications today, there is a need to deliver time-dependent data
to an unknown number of remote users. Video stream servers and game
servers are examples of such applications. For the interactive game applica-
tions common today, there are typically stringent latency requirements, due
to the interaction between players. An example of such game applications
are so-called massive multi-player online games (MMOGs), which have
become quite comprehensive and have increased considerably in complex-
ity and size. Today they typically involve several thousands of concur-
rent players, frequently interacting with each other [34]. Typical game
situations include role-playing, first person shooter and real-time strategy
games. When players are interacting with each other, it is important that
they receive the same information more or less at the same time to have
a consistent view of the game world. To obtain this, stringent latency re-
quirements are needed, as loss of data should not affect the outcome of the
game. E.g., in a first shooter scenario, a player firing his shot before his op-
ponent should not end up being shot himself, because of the loss of a data
packet.

Most MMOGs today apply a central server approach for collecting and
processing game events generated by players, and point-to-point commu-
nication to distribute game state updates. In case of errors, the servers usu-
ally use standard protocol implementations available in the operating sys-
tem kernels. Thus, often using TCP. TCP must live up to the strict latency
requirements these applications require, otherwise the game perception ex-
perienced by the players will diminish. In this thesis, we are running the
Linux 2.6.15 kernel, and modifications are thus made for this kernel.

A considerable number of TCP variations is present in the Linux 2.6.15
kernel. Quite a lot of them are designed for specific network scenarios, and
most of these are concerned with achieving a bigger throughput in high-

1

speed long distance networks. A high-speed network means having a high
bandwidth, while transferring over long distances results in a high delay,
i.e., these are networks with a high bandwidth-delay product (BDP).

Trying to achieve a high throughput means running thick streams. Thick
streams have no limit on the sending rate, they try to transmit as much
data as possible. TCP is well optimized for thick streams when it comes to
achieving a low retransmission delay. However, interactive applications do
not necessarily have the need to achieve the highest throughput possible.
They are typically thin data stream applications. Thin stream applications
only need to send a small amount of data every once in a while. Thus,
considerable time intervals between the sending of a few packets with a
limited payload are typical.

1.2 Problem definition

As the focus of the TCP protocol has mainly been on thick streams, and
thick stream related issues, TCP and it’s variations are not optimized for
thin streams, and their incorporated mechanisms do not perform satisfact-
orily in these surroundings. This results in high and varying delay, which
is not acceptable in interactive applications.

To fulfill the strict latency requirements of interactive applications, this
thesis proposes several enhancements for improving the thin stream per-
formance and reduce the retransmission delay. The enhancements are
sender-side modifications only, as they are developed for use in MMOGs.
Modifications at the receiver will be difficult to accomplish in such scen-
ario, possibly requiring a change in tens of thousands of receiver machines,
which presumably are running several different operating systems (OS)
and versions. Thus, this would not only require a change in all of these,
but it would also mean that several different implementations had to be
developed for use in the different OSes and versions. Additionally, we
probably will not even have access to all receiver machines. Assuming a
central server approach, applying changes at the sender (server) only re-
quire one implementation.

1.3 Outline

The document is organized as follows, in Chapter 2 the different TCP vari-
ations present in the Linux 2.6.15 kernel are presented. In Chapter 3, these
variations are then tested and evaluated for thick and thin streams, in dif-
ferent RTT and loss scenarios. Based on this evaluation, Chapter 4 presents
several enhancements for improving performance in thin stream settings.
Chapter 5 then describes the implementation, testing and evaluation of the
proposed enhancements, before we summarize our findings in Chapter 6.

2

Chapter 2

The TCP protocol variations

Transmission Control Protocol (TCP) is one of several transport protocols.
It is reliable, stream-oriented and flow-controlled. Additionally, TCP is
connection-oriented, meaning it establishes a connection when data needs
to be transferred. The data is sent in packets and in an ordered manner at
the transport layer.

TCP is considerate to other traffic, limiting the sending rate based on
perceived network congestion. This is congestion control. If there is little
traffic, the individual TCP connections increase the sending rate, and if the
opposite is true, the individual connections reduce their rate. TCP follows
a scheme called additive-increase, multiplicative-decrease (AIMD) in ad-
justing the rate. The sending rate is governed by the congestion window

(cwnd), important for congestion control.
The cwnd is a sender-side limit on the amount of data the sender can

transmit into the network before receiving an acknowledgment (ACK),
while the receiver’s advertised window (rwnd) is a receiver-side limit on
the amount of outstanding data. The minimum of cwnd and rwnd governs
data transmission. This is flow-control. [11]

Cwnd and rwnd changes throughout the connection. Exactly how it is
changed depends on the TCP protocol variation used. This is explained
under the individual TCP variations in the following section. The receiver
informs the sender of packet arrival by sending acknowledgments for the
packets it receives. A big part of today’s traffic is TCP-based. Examples are
e-mail, file transfers and web-traffic.

TCP is said to be fair, that is, streams that share a path get an equal share
of the bandwidth [33]. This is not entirely true, as long distance traffic is dis-
advantaged by it’s higher round-trip times (RTT), resulting in higher loss
probability per RTT and slower recovery. Non-TCP protocols are said to be
TCP-friendly if their long-term throughput does not exceed the through-
put of a conformant TCP connection under the same conditions [31].

3

Figure 2.1: Cwnd dynamics

2.1 TCP Reno

TCP Reno [24] [11] [26] is the default TCP protocol in many systems today.
Reno uses a Slow-start algorithm when it has opened a connection, or

when a retransmission timeout has occurred (these terms will be explained
shortly). During this phase it probes the network in order to find the avail-
able bandwidth. Sender Maximum Segment Size (SMSS) is the maximum
segment size the sender can transmit in one packet. The initial value of
cwnd must be less than or equal to 2 ∗ SMSS, and never be more than 2
segments. During slow-start, cwnd is increased by SMSS (at most) for each
received ACK, until it exceeds the slow-start threshold (ssthresh), or con-
gestion occurs. Ssthresh is the limit for slow-start. The ssthresh can be set
arbitrarily high, but might be reduced later due to congestion. Slow-start
is used when cwnd < ssthresh, while the Congestion Avoidance algorithm
is deployed when cwnd > ssthresh. If cwnd equals ssthresh, the choice is
yours to make. While in congestion avoidance, the cwnd is increased by
one SMSS for each RTT. Thus, we have exponential growth during slow-
start, but linear growth in congestion avoidance. Congestion avoidance
continues until packet loss is discovered by a retransmission timeout. Ss-
thresh is then set to cwnd/2 (see Figure 2.1).

Reno uses 2 different mechanisms to discover and retransmit lost seg-
ments. The first one is the retransmission timeout (RTO). When this is in-

4

voked the ssthresh is halved and slow-start is entered. The RTO is based on
RTT and variance estimates computed by sampling the time between when
a segment is sent and an ACK arrives. But this mechanism contains serious
weaknesses, due to it’s dependency to a clock too coarse for this type of ser-
vice. In BSD-based implementations, the clock used only "ticks" once every
500 ms, and timeouts can only be checked for each "tick". In Linux, the min-
imum RTO value is set to 200 ms (Hz/5), but increases with the RTT, thus
maintaining a high RTO value. This is insufficient, so in addition, Reno
incorporates the Fast Retransmit and Fast Recovery mechanisms.

Reno sends a duplicate ACK (dupACK) when it receives a segment it
cannot confirm, because it has not received all of the previous segments
yet. Reno does not only retransmit when a timeout occurs, but also when
it receives n dupACKs (Fast Retransmit), where 3 is the usual value of n.
Thus, n is the Fast Retransmit threshold (frexmt_thresh). When the third
dupACK arrives, the first unacknowledged segment is retransmitted, and
Fast Recovery is entered. First, the ssthresh is set to cwnd/2. The cwnd is
then set to ssthresh + 3 ∗ SMSS. The reason for not jumping to slow-start
is that the dupACKs do not only imply that a segment has been lost, but
also that segments are leaving the network. The receiver can only send a
dupACK when a segment arrives. This segment has then left the network
and is contained in the receiver’s buffer.

Each time the sender receives a dupACK, the cwnd is increased by one
SMSS, since the arrival of a dupACK suggests that a segment has left the
network. A new segment can then be transmitted, if permitted by the new
cwnd. When the sender receives a non-duplicate ACK, it sets the cwnd to
ssthresh. This ACK should acknowledge the retransmitted segment, and
all the intermediate segments between the lost segment and the receipt of
the third dupACK.

2.1.1 TCP New Reno

New Reno [16] [24] modifies the original’s Fast Retransmit and Fast Recov-
ery in order to deal with multiple packet loss. Reno leaves Fast Recovery
when it receives the first non-duplicate ACK. But if multiple packet loss
has occurred, this ACK will be followed by additional dupACKs, and Reno
will enter another cycle of Fast Retransmit and Fast Recovery, resulting in
another decrease of cwnd and ssthresh. New Reno remains in Fast Recov-
ery until every lost packet has been retransmitted and acknowledged, thus
preventing a further decrease in throughput.

New Reno also uses the concept of partial acknowledgments. If mul-
tiple packet losses occur, the ACK for the retransmitted packet will acknow-
ledge some, but not all of the segments transmitted before Fast Retransmit.
Thus, a partial ACK indicates that another packet was lost, and New Reno
retransmits the first unacknowledged packet.

5

Because of this, New Reno saves the highest sequence number (seqnr)
sent so far. It then proceeds with retransmission and Fast Recovery as
usual. When a non-duplicate ACK arrives, it checks if the ACK covers the
highest seqnr. If this is not the case, the first unacknowledged packet is re-
transmitted, and the retransmission timer is reset, but it does not leave Fast
Recovery. Otherwise, if the ACK covers the seqnr, it leaves Fast Recovery
in the regular way, i.e., the cwnd is set to ssthresh.

Additionally, New Reno is able to discover "false" dupACKs, sent be-
cause of multiple packet loss. Due to multiple loss, the ACK for the retrans-
mitted packet is followed by more dupACKs, indicating the loss of another
packet. This will bring Reno into another Fast Retransmit scenario, causing
further reduction of throughput. New Reno checks if the dupACKs cover
the highest seqnr (mentioned earlier). If so, Fast Retransmit is invoked
again (this is a new incident). Otherwise, these are acknowledgments sent
before the timeout, and the mechanisms mentioned in the previous para-
graph will ensure their retransmission.

Still, New Reno only retransmits one packet per RTT. It cannot predict
the next lost packet until it receives the ACK for the previous one. Thus,
it could take a substantial amount of time to recover from a loss episode,
depending on the number of packets lost and the size of the RTT.

It is the New Reno version of the TCP Reno protocol that is implemen-
ted in the 2.6.15 kernel. Thus, the old Reno will not be tested here. Despite
this, the name of the congestion control parameter for setting New Reno
congestion control is still reno. The TCP variations presented in the fol-
lowing sections provide alternate congestion control strategies, and can be
enabled to replace New Reno congestion control.

2.2 TCP Vegas

TCP Vegas [26] [29] [40] [36] is a modification of Reno, and provides altern-
ative implementation of 3 key mechanisms. First of all, Vegas introduces a
new retransmission strategy. Even though Reno’s Fast Retransmit and Fast
Recovery are very successful, and often prevent retransmission timeouts, it
still partially depends on this technique. Vegas eliminates this dependency
by dynamically computing the timeout value. Vegas reads and records the
system clock each time a segment is sent. When an ACK arrives, the time
is read again, and Rtt is calculated using these values. This estimate is used
for deciding when to retransmit for the 2 following scenarios:

• The first one is the arrival of a dupACK. Vegas checks if the difference
between the recorded sending time and the present is higher than
the previously calculated timeout value (Rtt). If so, the segment is
retransmitted without reducing cwnd.

6

• The second is the arrival of the first or second non-duplicate ACK
following a retransmission. Again Vegas checks if the time interval
exceeds the timeout value. If so, the segment is retransmitted. This
catches any segments lost previous to the retransmission.

This dynamic calculation of the timeout value provides a quicker reaction
to packet loss. Additionally, the estimate is used to discover other lost pack-
ets, preventing a further reduction of throughput.

Next, Vegas provides a different congestion avoidance algorithm. Reno
uses the loss of segments as an indication of congestion in the network,
i.e. Reno needs to create packet loss in order to find the available band-
width. Thus, Reno contributes to the congestion, creating it’s own losses.
This might not be expensive if this is caught by Fast Retransmit and Fast
Recovery, but unnecessarily filling the routers buffers might cause packet
loss for the other connections using these routers.

Vegas’ alternate congestion avoidance algorithm is able to discover con-
gestion tendencies, and then perform adequate adjustments to the sending
rate, without causing packet loss. In addition, it provides a better utiliza-
tion of the bandwidth, as it responds quickly if temporary increases in the
available bandwidth should emerge.

First the connection’s BaseRTT is defined as the RTT when congestion is
absent in the network, meaning the lowest measurement of the RTT. This is
usually the RTT for the first segment sent in the connection. Assuming the
connection is not overflowed, the expected throughput is
expected = WindowSize/BaseRTT . WindowSize is the current size of the
cwnd. Vegas then computes the actual sending rate, actual. This is done
by recording the transmission time for a given segment and measuring the
number of bytes transmitted before the ACK arrives. Then, the RTT for the
segment is calculated, and the number of bytes transmitted is divided by
this RTT, which gives the rate (actual). Expected and actual are then com-
pared, and appropriate adjustments to the window are performed. This is
done by calculating Di f f = expected − actual. Diff is positive or zero by
definition, since a negative value would suggest that we change BaseRTT
to the last sampled RTT.

Next, 2 thresholds α and β are defined, α < β. α and β specify having
too little or too much extra data in the network, respectively. α and β are
defined in Linux 2.6.15 as 2 and 8 segments, respectively. Extra data is
specified as data that would not have been sent if the bandwidth used by
the connection exactly matched the available bandwidth [26]. This leads to
buffering of data in the routers, which will obviously cause congestion if
too much extra data is sent. However, if not enough extra data is sent, the
connection will not be able to respond rapidly enough in case of transient
increases in the available bandwidth. Vegas’ goal is to maintain the "right"
amount of extra data in the network. If Di f f < α, the congestion window

7

is linearly increased during the next RTT, while Di f f > β causes a linearly
decrease. If α < Di f f < β, the window remains the same.

Vegas’ last modification concerns the slow-start algorithm. When slow-
start is used at the start of a connection, one has no idea what the available
bandwidth is. However, if slow-start is invoked later in the connection, it
is known that this was due to packet loss with window size cwnd, and ss-
thresh is set to half. But, at the start, it is difficult to predict a proper value
for ssthresh. If it is set to low, the exponential increase will stall too early,
and it will take a substantial amount of time to reach the available band-
width. On the other hand, if ssthresh is set too high, the increase will over-
shoot the available bandwidth, potentially causing congestion. In order to
discover and prevent this during slow-start, Vegas only allows an increase
of the window every other RTT. In between, the window stays fixed, so
valid comparisons between the expected and actual throughput rate can
be performed. When the difference between expected and actual rate (i.e.,
Diff) corresponds to one router buffer, Vegas changes from slow-start to
linear increase/decrease of the window (congestion avoidance). However,
despite these precautions, Vegas might still overshoot.

Only allowing an increase of the cwnd every other RTT means that Ve-
gas needs more time to reach the ssthresh, thus staying longer in slow-start.
This has a massive effect for the throughput, and is extremely considerate,
as connections running other TCP variations will not follow the same ap-
proach.

According to [36], Vegas got considerable problems coexisting with Reno,
which will make it considerably more difficult for Vegas to expand, consid-
ering that Reno is the dominant protocol used in the Internet today. Vegas’
performance decreases below Reno’s if it gets competition from the latter.
Vegas’ modified slow-start and congestion avoidance algorithms are too
considerate towards Reno, politely backing off in case of congestion, some-
thing Reno greedily will exploit.

Unfortunately, the Linux 2.6.15 kernel only implements the congestion
avoidance algorithm of Vegas, not the Fast Retransmit and Recovery or
slow-start modifications (slow-start is fortunate though). Since this is one
of the parts that causes Vegas trouble, this might weaken Vegas’ impres-
sion, as the other (possibly excellent) modifications will not be tested.

2.3 TCP BIC

TCP BIC [1] [43] is a TCP variation designed for high-speed long distance
networks, i.e., high BDP. BIC is short for Binary Increase Congestion. The
demand for fast download of large-sized data is increasing, and hence,
networks that can handle this demand are expanding. However, regular
TCP cannot satisfy these demands. TCP does not respond quickly enough

8

in high-speed long distance networks, leaving sizeable amounts of band-
width unused.

TCP BIC is a congestion control protocol designed to solve this prob-
lem. What makes BIC special is it’s unique window growth. When packet
loss occurs, the window is reduced by a multiplicative factor. The window
size just before the loss is set to maximum, while the window size imme-
diately after the reduction is set to minimum. Then, BIC performs a binary
search using these 2 parameters. It jumps to the midpoint between these
values. Since packet loss occurred at maximum, the window size currently
manageable by the connection must be somewhere in between these 2 val-
ues. However, jumping to the midpoint could be too much of an increase
within one RTT. Thus, if the distance between the midpoint and the current
minimum is greater than a fixed constant, Smax, the window size is instead
increased by Smax ([43] uses Smax = 32). If the new window size does not
cause packet loss, the window size becomes the new minimum. However,
if packet loss occurs, the window size becomes the new maximum. This
process continues until the increase is less than a small constant, Smin ([43]
uses Smin = 0.01). The window is then set to the current maximum. Thus,
the growth function following packet loss will most likely be a linear one
followed by a logarithmic one.

Since the growth rate decreases as BIC gets closer to the equilibrium, the
potential overshoot is typically less than for other protocols, reducing BIC’s
influence on other connections. BIC also provides a better utilization of the
bandwidth due to it’s fast convergence towards the available bandwidth.

If the window grows past the maximum, the equilibrium window size
must be bigger than the current maximum, and a new maximum must be
found. BIC then enters a phase called "max probing". At first, the window
grows slowly assuming that the new maximum is nearby. If no packet loss is
experienced during this period, it assumes that the equilibrium maximum
is further away, and changes to linear growth by increasing the window by
a large, fixed constant. Contrary to the binary search phase, BIC’s growth
function is in this phase exponential at first (which is very slow in the be-
ginning), followed by linear growth.

BIC’s growth function might still prove aggressive to other TCP vari-
ations, especially in low-speed networks or networks with low RTT. Thus,
a BIC variant called CUBIC has been developed. CUBIC enhances the TCP-
friendliness and provides a modified growth function, which grows much
more slowly than binary increase (which is logarithmic) near the origin.
BIC can also exhibit extremely slow convergence following network dis-
turbances such as the start-up of new flows [3]. Despite this, BIC is the
default TCP congestion control variation in the Linux 2.6.15 kernel.

9

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

���
���
���

���
���
���

Bytes

200 500 800 1100 1400

Still missing

Received

Segment

WINDOWRECEIVER

Figure 2.2: Dynamics of the receiver window

2.4 TCP SACK

SACK [8] [10] is short for Selective Acknowledgments and is a strategy
provided to satisfactory handle multiple packet loss. Multiple packet loss
from a window can have a significant influence on TCP throughput. The
problem is that TCP does not acknowledge packets that are not located at
the left edge of the window (see Figure 2.2). If the packet received is not the
expected one, it is not acknowledged even though it indeed successfully ar-
rived. This forces the sender to wait an entire RTT to discover each packet
loss, or to unnecessarily retransmit packets which may have already been
successfully received. Thus, multiple packet loss generally causes a signi-
ficant reduction of throughput.

By using SACK the receiver informs the transmitter which packets have
arrived successfully, enabling the sender to only retransmit packets that
were actually lost. SACK provides this information by putting each re-
ceived block’s first and last 32 bits in the header. SACK can be enabled by
using the SACK-permitted option in a SYN message.

2.4.1 TCP DSACK

DSACK [12] is an extension of TCP SACK and is short for Duplicate SACK.
DSACK is able to acknowledge duplicate packets. When duplicate packets
are received, the first block of the SACK-field is used to denote the seqnrs
of the packet that triggered the ACK. This enables the sender to infer the
order of packets received by the receiver, allowing it to infer when a packet
was unnecessarily retransmitted.

This information might prove to be useful for the sender, securing a
more robust execution of it’s tasks in environments exposed to for example

10

packet replication, packet reordering or loss of ACKs.

2.4.2 TCP FACK

FACK [39] [2] is short for Forward Acknowledgment and is based on TCP
Reno with SACK. FACK is using the information provided by SACK to
compute a better estimate of the amount of data currently in transit (out-
standing data). This information is essential for any congestion control al-
gorithm.

To estimate the amount of outstanding data, FACK introduces a new
variable, fack, denoting the highest seqnr known to have been received
plus 1. The variables next and una represent the first byte of data yet to be
sent and the first unacknowledged byte, respectively. The window starts
from una and ends with next. This means that some blocks from una to fack
have been acknowledged, but not all of them. Blocks that have not been
acknowledged by SACK are still outstanding, i.e., they are retransmitted
but not acknowledged. Thus, the amount of data currently in transit is
next − f ack + retransmitted. However, FACK might in some cases under-
estimate the amount of outstanding data.

Additionally, FACK addresses another unfortunate side effect experi-
enced by Reno. When halving the window, there is a pause in the sender’s
transmission until enough data has left the network. This pause is reflec-
ted in the ACKs, and leads to the transmission of a group of segments at
the start of each RTT. This uneven distribution can be avoided by a gradual
reduction of the window, something FACK does. This allows congestion to
go away and thereby reduces the probability of a double loss.

2.5 TCP Westwood

TCP Westwood [32] [42] [18] is a modification of New Reno developed to
provide increased performance in surroundings subject to high BDP, packet
loss and/or dynamic bandwidth. High-speed heterogeneous or wireless
networks are examples. In these surroundings, packet loss might occur be-
cause of noise or other types of external disturbances. Westwood is able to
separate this form of packet loss from the usual one (packet loss due to con-
gestion), ensuring appropriate adaptions for both types of loss. Westwood
additionally includes a mechanism to utilize dynamic bandwidth, called
Agile Probing.

ERE is short for Eligible Rate Estimation and is a kind of bandwidth
estimate. Westwood’s key idea is the use of ERE methods, employed to
set the cwnd and ssthresh intelligently following packet loss. Westwood
calculates the ERE estimate over a time Tk, and is computed as the amount
of acknowledged data during Tk. Tk depends on the congestion level. The

11

latter is measured as the difference between the expected and actual rate (as
in TCP Vegas, Section 2.2). Tk is computed as:

Tk = RTT ∗ ((expected − actual)/expected)

where RTT is an estimate of the last RTT as in Vegas. When there is no con-
gestion, the difference between expected and actual (i.e. Diff) will be small,
producing a small Tk. Westwood then uses the last collected ERE when
computing the new cwnd and ssthresh following packet loss. Ssthresh is
set to (ERE ∗ BaseRTT)/segmentsize , while cwnd depends on the scenario.
If 3 dupACKs are received and cwnd is larger than the new ssthresh, cwnd
is set to ssthresh. Otherwise, nothing is done. If the scenario was caused
by a timeout, the cwnd is set to 1. However, if the new ssthresh is less than
2, provided the scenario was a timeout, ssthresh is set to 2.

Reno is not able to tell one situation from the other, it blindly assumes
congestion following 3 duplicate ACKs. This leads to a drastic decrease in
throughput, which might not have been required.

According to [22], Westwood might overestimate the available band-
width, something which will lead to an aggressive and unfair behaviour
towards new TCP-sessions.

2.6 High-speed TCP

High-speed TCP (HSTCP) [30] [23] [17] is a TCP modification developed to
deal with high-speed networks and the challenges they offer. Regular TCP
is not able to utilize the available bandwidth in a high-speed environment,
as mentioned under TCP BIC (Section 2.3). TCP’s problem is that it’s AIMD
mechanism reacts too conservatively to packet loss, thus preventing reach-
ing a large enough congestion window to utilize the available bandwidth.
The limitation is the growth rate of the window, which is not rapid enough
in this environment. Few of the TCP variations are concerned with this as-
pect. Thus, even though they are useful, the SACK and ECN [14] options
are limited by their functionality in high-speed surroundings.

In a steady-state environment with a loss rate p, the average cwnd for
TCP is roughly 1.2/sqrt(p) (sqrt - square root). This is called TCP’s re-

sponse function, and places a serious constraint on the achievable win-
dow size in realistic surroundings. As an example, to achieve an average
throughput rate of 10 Gbps, with a packet size of 1500 B and RTT of 100 ms,
an average cwnd of 83.333 would be required, and thus, a packet loss rate
of 1/5.000.000.000 [30]. This is not realistic in current networks.

HSTCP suggests a modification to the response function in order to re-
move this constraint. It introduces 3 parameters: Low_Window, High_Window
and High_P. To provide TCP compatibility, HSTCP uses the same response
function as TCP when the current cwnd is less or equal to Low_Window.

12

Thus, if the loss rate is high (implies congestion), the cwnd will consequently
be relatively small. Introducing a new, more aggressive response function
will only add to the congestion in this case.

When the current cwnd is greater than Low_Window, HSTCP switches
to it’s own response function. [30] sets Low_Window to 38, corresponding to
a loss rate of 10−3 for TCP. High_Window is set to 83.000, which is the av-
erage cwnd size required to achieve 10 Gbps as mentioned earlier. High_P
is set to 10−7, specifying that for HSTCP, a packet loss rate of 10−7 allows
the average window size to reach 83.000. HSTCP’s response function, for
average window size W greater than Low_Window, is then defined as:

W = (p/Low_P)SLow_Window

S is a constant defined as:

S = (log(High_Window) − log(Low_Window))/(log(High_P) − log(Low_P))

Low_P is the packet loss rate corresponding to Low_Window, thus 10−3 as
mentioned earlier. Using these values, we get the response function

W = 0.12/p0.835

which enables much larger values of W. Thus, HSTCP is less sensitive to
packet loss and should be able to maintain a high-speed connection.

HSTCP might impose a certain degree of unfairness as it does not re-
duce it’s transfer rate as much as regular TCP. Additionally, during con-
gestion control, it’s slow-start might be more aggressive. This is especially
the case when the loss rate is relatively high, as HSTCP will have a bigger
cwnd and thus be able to send more data into the network. HSTCP can also
exhibit extremely slow convergence following network disturbances such
as the start-up of new flows [3].

2.7 Scalable TCP

Scalable TCP (STCP) [35] is another attempt to provide better utilization in
high-speed wide area networks. Regular TCP’s poor performance in this
environment has already been thoroughly introduced, and STCP aims to
better utilize the bandwidth in high BDP networks. In order to achieve
this, STCP suggests alternative algorithms for cwnd increase and decrease
(in congestion avoidance).

STCP proposes to increment the cwnd by cwnd = cwnd + 0.01 for each
ACK received in an RTT. Regular TCP increments the window as
cwnd = cwnd + (1/cwnd), which gives cwnd + 1 for each RTT, as we may
send cwnd number of packets per RTT. At the first detection of conges-
tion in an RTT, the window is decreased as cwnd = cwnd − (0.125 ∗ cwnd).

13

Thus, following a loss event, it will take STCP about 70 RTTs to recover
from the loss at any rate. TCP needs cwnd/2 RTTs, which could be quite
some time if the window and/or RTT are large. Thus, the time it takes to
recover may exceed the interval between congestion events, leading to a
gradually decrease of throughput.

These modifications result in a different response function for STCP,
i.e., (0.01/0.125) ∗ (1/p). However, this gives STCP a certain advantage
over regular TCP in the recovery process following a loss event, which
could lead to an unfair share of the bandwidth. To prevent this, STCP uses
the same algorithm as regular TCP until a legacy window (lwnd) size is
reached. As previously explained in HSTCP, regular TCP has some prac-
tical limitations of the cwnd size, meaning the window tends to not be
greater than a certain size, lwnd. When cwnd exceeds lwnd, STCP switches
to the it’s own algorithm.

Providing this flexibility makes STCP fair towards other regular TCP
connections until lwnd is reached, at which point the other connections
should have serious concerns about their packet loss recovery times any-
way. STCP is simpler to implement than HSTCP, due to it’s use of constants
in the window update algorithm, opposed to the parameterized HSTCP.
However, it is known that it may fail to converge to fairness in drop-tail
networks [3].

2.8 H-TCP

H-TCP [3] [41] [37] is yet another approach to improve TCP’s performance
when the cwnd is large, implying networks with high BDP. H-TCP’s al-
gorithm resembles those of HSTCP, BIC and STCP, but aims to remove cer-
tain weaknesses present in these protocols (explained under the spesific
protocol).

H-TCP defines 2 values, ∆ and ∆L. ∆ is the time elapsed since the last
congestion incident, measured in seconds. ∆L is the threshold for switching
from the legacy to the new increase function. H-TCP proposes to change
the additive increase element of the AIMD mechanism to

cwnd = cwnd + α/cwnd

for each ACK received. α is first calculated as

1 + 10(∆ − ∆L) + 0.5 ∗ (∆ − ∆L)2

provided that ∆ > ∆L. If ∆ <= ∆L, α is just 1. This is done to provide
backward compatibility with regular TCP. If ∆ > ∆L, α is set as

α = 2(1 − β)α∆

14

β is calculated as β = RTTmin/RTTmax, but must stay between 0.5 and
0.8 (β ∈ [0.5, 0.8]). When a congestion event occurs the cwnd is changed
accordingly, cwnd = β ∗ cwnd.

Using ∆ maintains a certain degree of symmetry between competing
flows, since it is based on the time elapsed since the last congestion event. If
packet drops are synchronized, ∆ will be the same for all flows. Otherwise,
∆ is still the same on average, provided that each flow shares the same
probability of backing off in case of congestion. Hence, symmetry is still
maintained in an average sense.

2.9 TCP Hybla

TCP Hybla [28] [27] is a recently developed modification designed to re-
move the penalties from which connections with long RTTs suffer. The
well-known slow-start mechanism of TCP maintains an exponential in-
crease of the cwnd per RTT, while the congestion avoidance mechanism
causes a linear increase per RTT. Thus, the increment rate depends on the
RTT, meaning connections with longer RTTs require more time to increase
their cwnds compared to connections with short RTTs, resulting in corres-
ponding throughput penalty.

The cwnd size in segments at time t, W(t), depends on the RTT accord-
ingly:

W(t) =
2(t/RTT) for 0 ≤ t < tγ (slow-start)

t−tγ

RTT + γ for t ≥ tγ (congestion avoidance)

tγ denotes the time the ssthresh value γ is reached.
The same problem remains if we look at loss recovery. Taking New

Reno as an example, it only recovers 1 packet per RTT. Thus, the time New
Reno stays in the recovery phase depends on the RTT.

The basic idea of TCP Hybla is to equalize the performance of connec-
tions with different RTTs. Thus, the connections must have the same in-

stantaneous transmission rate (i.e., the amount of segments transmitted
per second), B(t) = W(t)/RTT. This can be achieved in two steps, first
by making W(t) independent of the RTT, and second by compensating the
effect of the division by RTT. [27]

Hybla introduces a normalized RTT, ρ, defined as ρ = RTT/RTT0. RTT0

is the RTT of a reference connection to which we want to equalize our per-
formance. The first step is then performed by multiplying the time t by ρ,
if in slow-start. If in congestion avoidance, ρ is multiplied by the time that
has elapsed since the reaching of the ssthresh. This results in a W(t) inde-
pendent of the RTT. The second step is then executed by multiplying this
cwnd by ρ. This gives the following modified algorithm:

15

W(t) =
ρ2(ρt/RTT) for 0 ≤ t < tγ,0 (slow-start)

ρ
(

ρ
t−tγ,0

RTT + γ
)

for t ≥ tγ,0 (congestion avoidance)

As a consequence of the modification introduced in the second step, the
switching time tγ,0 (the time when the cwnd reaches ργ), is the same for
all RTTs. Thus, tγ,0 = RTT0 log2 γ. In [28], RTT0 is set to 25 ms, the Linux
2.6.15 implementation has chosen the same value. Hybla acts exactly like
New Reno when the minimum RTT estimated by the sender is less or equal
to RTT0.

Hybla’s modified growth algorithm is thus:

cwnd =
cwnd + 2ρ − 1, (slow-start)

cwnd + ρ2/cwnd, (congestion avoidance)

Due to the difference in the congestion control algorithm, Hybla will
have a larger average cwnd for connections with high RTTs than standard
TCP. Thus, multiple losses within the same window will happen more fre-
quently in Hybla’s case, and as the time the protocol stays in the recovery
phase depends on the RTT, appropriate measures to deal with this are re-
commended to be in place, i.e. SACK is recommended in the TCP Hybla
proposal.

2.10 Summary

In this chapter, the different TCP variations in the Linux 2.6.15 kernel have
been presented. The considerable number of variations suggests that the
Reno variation has some shortcomings, as most of the variations aim to
improve some limitation in the Reno variation (often related to a specific
environment).

Most of the modifications are designed for high-speed environments,
indicating limitations of the Reno variation in this kind of surrounding, and
additionally where the main focus of TCP research is. The most important
characteristics of the different variations will now be shortly summarized.

2.10.1 Characteristics of the TCP variations

TCP Reno

• The default TCP protocol in many systems today

• Cwnd increase in congestion avoidance: cwnd = cwnd + (1/cwnd)
(per ACK received in an RTT)
giving cwnd = cwnd + 1 (per RTT)

16

• Upon packet loss: ssthresh = cwnd/2

TCP New Reno

• Stays in Fast Recovery (opposed to original Reno)

TCP Vegas

• Dynamically calculates an additional timeout value, allowing it to po-
tentially retransmit prior to the reception of the third dupACK, if the
time exceeded this timeout value

• Adjusts the cwnd in congestion avoidance based on perceived net-
work congestion

• Only allows an increase of the cwnd every other RTT, while in slow-
start. This has a massive effect on throughput, and is presumably
one of the main reasons for the problems Vegas experience in many
systems

TCP BIC

• Reduces the cwnd with a multiplicative factor (minimum), in case of
packet loss. Performs a binary search between (minimum) and the
cwnd at the time of loss (maximum)

• Additionally performs ’max probing’, if the cwnd grows past the cur-
rent maximum

• Designed for high-speed environments

TCP SACK

• Informs the sender which packets were successfully received, enabling
the sender to discover multiple packet loss, and to only retransmit
packets that were actually lost

TCP DSACK

• Extension of SACK, additionally informs the sender about duplicate
packets received as well

17

TCP FACK

• Uses the information provided by SACK to compute a better estimate
of outstanding data

• Reduces the cwnd gradually

TCP Westwood

• Able to separate between different types of packet loss

• Uses a kind of bandwidth estimate, Eligible Rate Estimation (ERE), in
calculating the new ssthresh and cwnd following packet loss.
ssthresh = (ERE ∗ BaseRTT)/segmentsize

• Designed to handle wireless environments

High-speed TCP

• Modifies the TCP response function to packet loss rate p, (1.2/sqrt(p)),
in order to reach much bigger cwnd sizes in high-speed environ-
ments. HSTCP’s modified response function is:
0.12/p0.835

• Designed for high-speed environments

Scalable TCP

• Cwnd increase in congestion avoidance: cwnd = cwnd + 0.01 (per
ACK received in an RTT)

• Upon the first detection of congestion, the cwmd is decreased accord-
ingly: cwnd = cwnd − (0.125 ∗ cwnd)

• Gives a different response function: (0.01/0.125) ∗ (1/p)

• Designed for high-speed environments

H-TCP

• Cwnd increase in congestion avoidance: cwnd = cwnd + α/cwnd (per
ACK received in an RTT)
α = 2(1 − β)α∆

∆ is the time elapsed since the last congestion incident, in seconds

• If congestion occur, the cwnd is changed accordingly: cwnd = β ∗ cwnd
(β = RTTmin/RTTmax, β ∈ [0.5, 0.8])

• Designed for high-speed environments

18

TCP Hybla

• Equalize performance for connections with different RTTs

• Cwnd increase:

cwnd =
cwnd + 2ρ − 1, (slow-start)

cwnd + ρ2/cwnd, (congestion avoidance)

ρ is a normalized RTT: ρ = RTT/RTT0. RTT0 is in Linux set to 25 ms

• Designed for connections with long RTTs

Now that the TCP variations have been introduced, we move on to test the
different variations individual strategies, and see how they perform under
various circumstances.

19

Chapter 3

Testing of the different TCP
variations

The introduction of the considerable number of TCP variations in the Linux
2.6.15 kernel has presented us with a number of different strategies. Now
that they have been introduced, it is time to see how they perform in vari-
ous network environments. As our main focus is on retransmission delay
(RTD), we want to test how these different strategies affect the RTD, or de-
termine that they do not influence it. As the variations are designed for a
number of different network settings, it is necessary to test the variations
in several different RTT and loss scenarios.

Additionally, we want to test the variations for different kinds of streams.
More precisely, we want to test the protocols’ performance when transmit-
ting thin and thick streams, respectively. For thick streams there are no
limits on the sending rate. We just want to transmit as much data as pos-
sible, as fast as we can. A lot of the variations are high-speed designed
and should boost the stream performance in such surroundings. Testing
the variations for thick streams should provide a useful impression of their
performance.

However, not all applications have the need to transfer as much data as
possible, they mainly want TCP’s reliability and ordering. Some just need
to transfer a small amount of data every once in a while, i.e., they are thin.
However, once data needs to be transmitted, it is beneficial if the transfer is
fast. Thus, as these thin streams are limited in the amount of data sent, they
have a limited number of packets in flight, and there could be considerable
time intervals between the sending of packets. Additionally, the amount of
data sent in each packet might be limited as well.

20

3.1 Test configurations

3.1.1 The testbed

To perform testing of the different TCP variations a network was construc-
ted, consisting of 3 computers, simulating sender, network environment
and receiver, respectively (see Figure 3.1). Various network restrictions
were set at the middle computer in order to simulate different network
types (see own section 3.1.3 below for details).

As we are considering game scenarios, the sender is meant to simulate
the game server sending game data to an unknown number of game play-
ers. The receiver simulate an arbitrary player. Thus, data is only sent from
the sender to the receiver, and additionally, we only change the sender side,
as we would have little possibility to alter an arbitrary number of player
computers in a real game scenario.

Each computer is running the Linux 2.6.15 kernel, and the TCP vari-
ations tested are the ones present in this release. The network cards used
are Fast Ethernet cards, resulting in a 100 Mbit/s link between the sender
and the receiver.

The individual TCP variations are in turn enabled at the sender. Using
netperf [7], a stream was sent through the router to the receiver for each
variation. Tcpdump [19] was used to listen and gather the headers of pack-
ets sent by the stream, and tcptrace [20] was used to evaluate this informa-
tion to provide essential RTD statistics for the stream. These programs are
described more closely in the following section.

3.1.2 Emulator and simulation settings

The different TCP protocols were enabled using the sysctl command, which
activates the specified protocol.

Netperf

Netperf is used to send TCP streams. It is a tool for measuring various
aspects of networking performance. Netperf is essential for these tests
as it provides options to limit the sending rate, useful for simulating thin
streams. An example, taken from the tests, is:

netperf -H 192.168.2.2
-w 1000
-b 4
-l 1800
-t TCP_STREAM
--
-m 100

21

192.168.1.2

192.168.1.1

192.168.2.1

192.168.2.2

RECEIVER

SENDER

EMULATOR

NETWORK

Figure 3.1: The Testbed

22

The -H option specifies the receiver, the -w option is used to denote the in-
terval between the bursts in ms, while -b specifies the number of messages
sent in each burst. -l is the length of the test in seconds, while -t denotes the
type of the stream. - - denotes that the remaining options are test specific.
Only one option is used, -m which is the message size in bytes. Thus, the
given command runs a TCP stream test, sending 4 messages of 100 B each,
every second (1000 ms) for 30 min (1800 s) to the receiver 192.168.2.2.

Netem

Different constraints on the network are set and modified at the emulator.
The tc [21] [5] command is used to configure Traffic Control in the Linux
kernel. Through it, the netem [6] module is controlled, to impose delay and
packet loss in the network. An example is:

tc qdisc add dev eth0 root netem delay 50ms loss 5%

The qdisc and add parameters specifies that we want to add an queuing
discipline. dev eth0 specifies that we want to add it on Ethernet device eth0.
root specifies that we want to add it to the root hook, while netem specifies
that we want to use Netem to add delay (delay) of 50 ms and a loss rate
(loss) of 5%.

Tcpdump

Tcpdump is a packet capturing program used to capture the header inform-
ation of packets sent on a network. An example is:

tcpdump -i eth0 -w reno_s.dump &

In this example, tcpdump listens on the interface specified in the -i option
and saves the packet header information to the file given in the -w option
for later analysis. Here tcpdump listens on eth0 and saves the packet header
information in the reno_s.dump dump file.

Tcptrace

Tcptrace is the tool used for analysis of TCP dump files. It can produce
several different types of output information. In the tests it was run with
the -lr options, specifying long output information (l) and RTT statistics (r),
respectively. The information was written to file accordingly:

tcptrace -lr reno_s.dump > reno_s.txt

23

1 # Connection (192.168.1.2:46803-192.168.2.2:12000)
2 # Retransmission region for packet 21
3 # 18 PKT t 98.3273 seq 410 len 29
4 # 19 ACK t 98.5343 ack 439
5 # 20 PKT t 98.6194 seq 439 len 20
6 # 21 RTR PKT t 99.0793 seq 439 len 20
7 # 22 ACK t 99.2862 ack 459
8 # Retransmission count: 1
9 # Time between first trans and last retrans: 459.848 ms
10 # Time between first trans and final ACK: 666.854 ms

Figure 3.2: Loss_details example with RTT 200 ms

Loss_details

This program is provided by my supervisors. It is run against the dump file
provided by tcpdump, and offers a detailed view of each loss incident in
a given connection. It is useful for understanding the exact execution per-
formed for a given loss incident, which is beneficial when trying to explain
certain values.

Figure 3.2 show the output for one specific loss incident. The values in
line 3-7 needs further explaining. The first number (18-22) is the number
of the packet, the next row indicate if this is a retransmission (RTR) or a
dupACK (DUP, not shown). The next says whether the packet is a data
packet (PKT) or an acknowledgment (ACK). Then there is the time of cap-
turing, t (98.3273-99.2862), in seconds, from the start of the connection. The
next row says whether the sequence number following is the first byte in a
packet (seq) or the last acknowledged byte (ack). Then comes the sequence
number (410-459), and if this is a (re)transmission of a packet (seq) we have
the length of the packet (len) in bytes.

3.1.3 Description and justification of the network types simulated
in the tests

Thick streams

Most of the protocols present in the 2.6.15 kernel are designed to improve
the performance in high BDP settings (BIC, STCP, HSTCP, H-TCP, Hybla).
Thus, to perform a relevant comparison of the protocols, they should be
tested in such environments. Hence, no limitations on the sending rate
should be imposed, and the loss rate should be low. However, this has an
impact on the time needed for each test, as a certain number of retransmis-
sion samples is required to secure the tests’ validity, allowing any conclu-
sions to be made. A low loss rate imposes an extended run time for each
test. In order to avoid an escalation of the time needed for each test run,
the loss rate used is not as low as might be requested for some of the proto-
cols. This could partly constrain the performance of some of the high-speed

24

protocols. However, this provides a satisfactory number of retransmission
samples in decent time. 0.5% was chosen as the lowest loss rate.

To test the robustness of the individual protocols, it is necessary to per-
form the tests with varying delay, simulating different distances in the net-
work, and thus including high-speed long distance networks in the tests.
This will expose any impact that varying delay has on the performance of
the protocols. 50, 100 and 200 ms delay (each way) were chosen for the
tests.

Additionally, it is necessary to perform tests for a different loss scen-
ario, exposing any possible influence this might entail. Thus, a higher loss
rate must be introduced in order to observe what the protocols can handle.
Westwood is designed for increased performance in wireless networks suf-
fering from high loss rates, thus it should be appropriate to perform tests
in such a setting. A loss rate of 5% was chosen, and additionally, delays of
0, 50 and 100 ms (each way).

Thin streams

The most important part of the tests is however for the thin streams, as the
goal was to test the performance of these. To simulate thin streams it is ne-
cessary to limit the number of packets sent, and to have intervals between
the sending of an arbitrary unit of packets. This might be as low as a couple
of packets per second, not containing more than a few hundred bytes of
data. In the thin stream tests, 4 messages of 100 B each were sent each
second in one burst (i.e., 400 Bps). To get a thorough view of the protocols’
thin stream performance, a considerable number of network settings was
tested. Limiting the number of packets means a limitation of the number
of samples per time unit, and thus consequently in the number of retrans-
mission samples. If each message is sent in a separate packet, a maximum
of 240 packets can be sent each minute. If the loss rate is 0.5%, a packet
loss will occur every two minutes on average, thus requiring quite some
time to collect a minimum number of samples of approximately 300-400.
To avoid an escalation of the time needed for the tests, the loss rate used
is quite high, 5% and 10%, respectively. Even though this is too high for
the variations designed for high-speed environments, it is still acceptable.
These protocols would not have gained anything on throughput, regard-
less of the loss rate, as the streams run here are thin. For each loss rate, the
protocols were run with delays of 0, 50, 100 and 200 ms (each way).

3.2 Test results and evaluation

It is necessary to get a certain number of samples in order to get represent-
ative results, that are not affected by a few extreme values, and to be sure

25

that the values gotten were representative for this variation configuration.
It would always be nice to have more samples, but unfortunately time is
an inevitable issue (as it is in most scenarios). This puts some restrictions
on the number of samples if these are to be collected within a reasonable
time. Being able to collect a sufficient number of samples within an afford-
able time is most urgent in the thin stream scenarios, as they have a limited
transmission of packets, and thus require more time to collect the neces-
sary samples. A total number of samples of approximately 400 at least are
chosen to be sufficient in these tests. As mentioned earlier, it would al-
ways be beneficial to have more samples, but this is the value that could be
reached within the time at our disposal for this thesis. This minimum af-
fects the time length of the run, as the time needed to collect the necessary
number of samples varies according to the loss rate. Thus, the length of the
run vary from setting to setting.

3.2.1 Evaluation of the TCP variations for thick streams

Since a considerable number of the TCP variations present in the 2.6.15
kernel are developed for use in high BDP networks, it seemed reasonable
to perform some tests in such an environment, i.e. without limitations on
the stream. The tests were run in 6 different surroundings (network types),
varying by RTT and loss rate. Chosen loss rates were 0.5% and 5%. The
tests were run with a delay of 50, 100 and 200 ms (each way) for 0.5% and
0, 50 and 100 ms for 5%.

For each setting, each protocol were run, and for each protocol all com-
binations of SACK, DSACK and FACK were tested in addition to the plain
protocol, giving 5 tests per protocol: plain, with SACK, with SACK DSACK,
with SACK DSACK FACK and with SACK FACK (SACK must be enabled
in order to test the others).

For the settings with 0.5% loss, the tests were run for 30 minutes each,
while the settings with 5% loss were run for 10 minutes.

In the tables displaying the test results, the following abbreviations are
used:

P - plain
S - SACK
D - DSACK
F - FACK
Rexmt - Retransmitted packets
Stddev - Standard Deviation

The information presented is extracted from tcptrace’s (Section 3.1.2) stat-
istics. The values in the Retransmission Time Statistics part are meas-
ured as the time between two consecutive (re)transmissions of the same

26

 0

 50

 100

 150

 200

W
E

S
T

W
O

O
D

 S
-D

-F

V
E

G
A

S
 S

-D
-F

S
C

A
LA

B
LE

 S
-D

-F

R
E

N
O

 S
-D

-F

H
Y

B
LA

 S
-F

H
T

C
P

 S
-D

-F

H
IG

H
S

P
E

E
D

 S
-D

B
IC

 S
-D

-F

R
T

D
 (

in
 m

s)

top protocols

Figure 3.3: The top combination for each variation, thick streams, 50 ms
delay, 0.5% loss

segment. That is, the time between the original transmission and the first
retransmission, or between 2 retransmissions [20].

Additionally, plots of the RTD with standard deviation, for the best run
of each variation, are shown to provide better visualization.

Thick streams, 50 ms delay, 0.5% loss

The delay might be a little too low to correspond to long distance networks,
but it is approaching the necessary requirements. More importantly, 0.5%
packet loss is quite high, possibly high enough to partly constrain the pro-
tocols designed for high-speed.

The results (Table 3.1) for this environment vary little from each other,
except for HSTCP which suffers severe problems. Of HSTCP’s 5 tests, only
the protocol with the SACK DSACK option does not suffer from a surpris-
ingly low throughput (between 5 to 15 times lower than the other proto-
cols). This limitation in throughput is reflected in the average RTD, which
is twice as high as for the other protocols. The problem is not that the av-
erage is affected by higher max or min values, the average level is much
higher in general.

This makes sense, especially when the difference is so great. If the

27

TCP Variation Packet Statistics Retransmission Time Statistics (in ms)

Total Rexmt Rexmt rate Min Max Avg Stddev

BIC P 293 096 1 508 0.00514 103.2 598.3 136.0 49.9

BIC S 302 163 1 519 0.00502 102.0 325.8 127.8 31.7

BIC S D 303 609 1 506 0.00496 102.9 632.0 127.7 38.0

BIC S D F 298 192 1 544 0.00517 102.2 330.4 124.4 30.8

BIC S F 299 716 1 578 0.00526 101.0 416.4 124.8 29.7

HIGH-SPEED P 42 877 205 0.00478 104.0 450.5 300.0 79.4

HIGH-SPEED S 43 423 223 0.00513 104.1 548.6 256.4 53.0

HIGH-SPEED S D 255 148 1 302 0.00510 103.9 416.0 132.0 36.5

HIGH-SPEED S D F 42 975 198 0.00460 104.1 655.3 251.4 59.3

HIGH-SPEED S F 43 557 195 0.00447 104.1 654.6 258.1 75.7

H-TCP P 315 903 1 603 0.00507 102.9 588.9 136.2 51.5

H-TCP S 325 265 1 627 0.00500 102.9 404.0 125.9 32.1

H-TCP S D 320 869 1 601 0.00498 101.8 322.3 126.1 33.7

H-TCP S D F 328 861 1 656 0.00503 102.5 326.7 121.2 28.9

H-TCP S F 326 057 1 650 0.00506 102.5 380.0 122.7 31.2

HYBLA P 627 520 3 048 0.00485 102.4 728.8 134.7 66.0

HYBLA S 642 991 3 235 0.00503 102.2 419.9 122.0 35.6

HYBLA S D 640 486 3 309 0.00516 100.9 420.0 121.3 32.6

HYBLA S D F 659 460 3 224 0.00488 101.7 416.7 114.0 24.5

HYBLA S F 663 258 3 261 0.00491 101.2 359.8 113.1 22.9

RENO P 292 644 1 517 0.00518 103.7 632.0 134.4 49.2

RENO S 299 720 1 518 0.00506 103.7 322.1 127.7 31.3

RENO S D 305 551 1 493 0.00488 103.9 330.0 126.8 30.0

RENO S D F 310 689 1 494 0.00480 103.8 423.6 122.1 26.2

RENO S F 307 787 1 512 0.00491 102.8 640.0 123.3 31.5

SCALABLE P 432 117 2 164 0.00500 103.9 640.0 129.8 48.6

SCALABLE S 448 877 2 254 0.00502 103.9 323.7 122.8 29.4

SCALABLE S D 458 946 2 240 0.00488 103.9 322.0 123.3 30.8

SCALABLE S D F 460 971 2 193 0.00475 102.8 329.1 116.8 22.5

SCALABLE S F 454 832 2 260 0.00496 103.7 401.3 116.9 23.3

VEGAS P 224 051 1 085 0.00484 103.9 519.5 136.5 46.0

VEGAS S 223 377 1 106 0.00495 103.9 330.1 132.7 39.0

VEGAS S D 219 631 1 116 0.00508 103.3 323.7 131.9 39.4

VEGAS S D F 219 505 1 131 0.00515 103.9 326.2 129.3 35.4

VEGAS S F 216 998 1 103 0.00508 103.9 322.8 131.0 37.9

WESTWOOD P 492 691 2 521 0.00511 103.1 626.2 130.1 51.6

WESTWOOD S 510 371 2 577 0.00504 101.8 395.1 119.8 29.6

WESTWOOD S D 515 738 2 544 0.00493 102.7 640.0 118.8 30.0

WESTWOOD S D F 523 922 2 593 0.00494 102.7 401.9 114.9 25.7

WESTWOOD S F 529 025 2 643 0.00499 102.4 411.1 115.2 23.3

Table 3.1: Thick streams 50 ms delay, 0.5% loss, Retransmission Statistics

28

throughput is high, more packets will be in flight. Thus, dupACKs are
generated at a higher rate if a packet loss should occur. A fast generation
of dupACKs means quicker feedback to the sender in form of 3 dupACKs,
causing a retransmission. However, this does not hold when the through-
put gets bigger.

None of the other plain protocols differ much from each other, even
though their throughput does significantly. However, when SACK or FACK
are enabled, the protocols with the highest throughput gather up in front,
though not by much.

As mentioned earlier, the other protocol results for this environment
vary little from each other (Figure 3.3), with only 136.5 − 113.1 = 23.4 ms
separating the top value (Hybla with SACK and FACK, 113.1 ms) from the
bottom one (Vegas plain, 136.5 ms), and the minimum standard deviation
value is approximately the same size, 22.5 ms.

Some interesting results can still be observed. In the following discus-
sion, HSTCP is not considered due to it’s abnormal behaviour compared
to the other protocols. Every protocol shows a decrease in the RTD when
SACK is activated (HSTCP too), even though it is not big (between 3.8 and
12.7 ms). Furthermore, an even smaller decrease is observed in enabling
FACK (1.7-8 ms). STCP (129.8 ms) holds the top value for the plain proto-
cols. Westwood then represents the top value until FACK is enabled, then
Hybla obtains the pole position. Vegas remains safely at the other end for
all options. However, these differences are too small to draw any conclu-
sions, but the tendency is there.

Still, this corresponds well with the earlier prediction of the connec-
tion between throughput and RTD. Hybla (627 520-663 258) transmits a
triplicate number of packets compared to Vegas (216 998-224 051), while
Westwood (492 691-529 025) and STCP (432 117-460 971) are transmitting
approximately twice as many. The other protocols stay around 300 000.

The reason is that the loss rate is high enough to have an effect on
throughput. Westwood is favoured through it’s bandwidth estimate de-
tecting no bandwidth limitations, thus assuming packet loss did not oc-
cur due to congestion, and hence not reducing the cwnd as much. Hybla
is comparing itself with an imaginary connection with an RTT of 25 ms,
modifying it’s growth functions to achieve an equal sending rate. Thus,
it’s ssthresh and growth rate in congestion avoidance are higher than the
other protocols, resulting in a higher throughput. STCP’s high through-
put should indicate the invocation of it’s own modified growth functions,
providing a similar effect as Hybla’s, though not as effective.

The protocols’ minimum value is just above 100 ms, which is the delay
imposed on the network (i.e., RTT), indicating the justification of the fast
part in Fast Retransmit. Furthermore, even though the maximum values
are quite high (from 322.0-728.8 ms), the average stays close to the min-
imum values, proving the efficiency and domination of the Fast Retransmit

29

 0

 50

 100

 150

 200

 250

 300

 350

 400

W
E

S
T

W
O

O
D

 S
-F

V
E

G
A

S
 S

-D
-F

S
C

A
LA

B
LE

 S
-D

-F

R
E

N
O

 S
-D

-F

H
Y

B
LA

 S
-D

-F

H
T

C
P

 S
-D

-F

H
IG

H
S

P
E

E
D

 P

B
IC

 S
-F

R
T

D
 (

in
 m

s)

top protocols

Figure 3.4: The top combination for each variation, thick streams, 100 ms
delay, 0.5% loss

mechanism.

Thick streams, 100 ms delay, 0.5% loss

The tendency remains roughly the same when doubling the delay (Table
3.2), but the differences become clearer here (see Figure 3.4). The setting
should now fully simulate a high-speed long distance network, bringing H-
TCP up among the leading protocols. However, the difference in through-
put is somewhat less than in the previous setting, except for Hybla which
is crushing it’s opponents.

HSTCP gets the same depressing results, except this time it is the plain
protocol that is the lucky exception. Thus, it is again excluded from the
following discussion.

Furthermore, SACK’s impact gets bigger (especially on the top proto-
cols) with the increase in RTT, as it should according to the protocol spe-
cification. More importantly, the top protocols fail to differ from the others
without some SACK option enabled (i.e., the plain protocol).

BIC struggles to keep up with the other high-speed protocols in through-
put, failing to distance itself from the remaining protocols. This might be
due to the relatively high loss rate, which restricts the binary search pro-

30

TCP Variation Packet Statistics Retransmission Time Statistics (in ms)

Total Rexmt Rexmt rate Min Max Avg Stddev

BIC P 151 677 745 0.00491 204.2 1040.5 268.1 89.2

BIC S 156 567 732 0.00467 204.1 512.0 248.7 48.3

BIC S D 155 713 774 0.00497 204.2 448.0 246.6 46.6

BIC S D F 155 498 771 0.00495 204.2 544.0 243.5 43.0

BIC S F 153 230 752 0.00490 206.1 421.3 243.5 40.0

HIGH-SPEED P 128 125 635 0.00495 207.9 941.8 271.5 78.2

HIGH-SPEED 22 457 107 0.00476 208.0 866.3 502.4 89.4

HIGH-SPEED S D 22 244 116 0.00521 416.0 661.3 505.5 79.2

HIGH-SPEED S D F 22 799 119 0.00521 208.1 912.1 495.3 89.8

HIGH-SPEED S F 22 387 116 0.00518 260.1 880.0 504.6 98.1

H-TCP P 214 437 1 131 0.00527 206.0 1074.1 285.6 136.4

H-TCP S 222 983 1 163 0.00521 204.2 544.1 237.1 56.7

H-TCP S D 229 299 1 143 0.00498 204.2 618.4 237.2 57.4

H-TCP S D F 230 720 1 142 0.00494 204.2 624.0 230.6 49.1

H-TCP S F 229 452 1 142 0.00497 204.2 633.3 233.4 51.5

HYBLA P 364 130 1 813 0.00497 205.5 1246.3 278.8 157.6

HYBLA S 410 612 2 037 0.00496 204.2 633.4 226.2 55.3

HYBLA S D 395 366 2 096 0.00530 204.3 687.4 225.6 57.7

HYBLA S D F 415 155 2 046 0.00492 204.4 624.0 219.5 43.4

HYBLA S F 405 269 2 071 0.00511 204.1 626.7 221.2 48.6

RENO P 144 684 793 0.00548 208.0 979.0 272.4 78.4

RENO S 148 339 772 0.00520 207.7 492.0 253.0 50.0

RENO S D 150 892 753 0.00499 207.9 572.0 254.3 50.9

RENO S D F 149 591 787 0.00526 204.7 420.0 242.6 36.2

RENO S F 147 971 785 0.00530 208.0 423.1 244.2 35.6

SCALABLE P 214 772 1 304 0.00607 204.0 1380.1 334.2 147.5

SCALABLE S 221 377 1 081 0.00488 203.5 452.1 243.9 46.2

SCALABLE S D 221 349 1 126 0.00508 207.9 496.1 247.9 50.4

SCALABLE S D F 221 907 1 120 0.00504 206.9 511.4 234.0 33.0

SCALABLE S F 213 267 1 150 0.00539 206.5 533.0 236.0 33.0

VEGAS P 113 378 528 0.00465 207.9 1051.0 272.7 79.1

VEGAS S 110 842 562 0.00507 207.8 504.0 261.9 59.6

VEGAS S D 101 743 528 0.00518 206.0 624.0 271.4 60.7

VEGAS S D F 112 991 555 0.00491 208.0 427.0 258.3 49.8

VEGAS S F 108 007 569 0.00526 206.6 427.2 261.7 53.6

WESTWOOD P 238 393 1 248 0.00523 206.2 923.8 271.3 99.9

WESTWOOD S 249 560 1 304 0.00522 204.3 455.1 236.4 47.2

WESTWOOD S D 249 110 1 249 0.00501 204.1 452.1 238.0 52.2

WESTWOOD S D F 258 190 1 306 0.00505 204.2 625.0 229.4 37.2

WESTWOOD S F 256 856 1 260 0.00490 204.3 428.0 228.3 35.4

Table 3.2: Thick streams 100 ms delay, 5̇% loss, Retransmission Statistics

31

cess, and thus limits the cwnd size compared to the other high-speed pro-
tocols. The point is that these losses are random and do not indicate con-
gestion, the wrong conclusion is drawn by the classic protocols.

The interval between the top value for each protocol, regardless of the
individual SACK options, is quite small. Vegas with all SACK options en-
abled has the highest value of 258.3 ms, getting an interval of 38.8 ms. As
soon as any SACK option is enabled, Hybla is the winner. In fact, these are
the top 4 values in this setting. This makes sense, as the Hybla proposal
strongly requests the use of SACK (see the Hybla description, Section 2.9).

The average RTD values still roughly correspond to the throughput.

Thick streams, 200 ms delay, 0.5% loss

No major deviations from the results seen earlier. The former evaluation
fits quite well here too, although increasing the delay leads to an increase
for everything else as well. The RTDs vary more, leading to higher stand-
ard deviations for the individual protocols. Therefore, even though the gap
between Hybla and the other protocols’ values is widening, this is partly
covered by the increase in the standard deviations.

SACK’s impact is even more massive in this setting, with a decrease in
RTD between 112.9 and 279.9 ms. An interesting fact that arises in this set-
ting is the dramatic drop in the number of retransmissions when a SACK
option is enabled. The retransmission rate for the plain protocols stays
between 0.883 and 1.619%, even though the imposed loss rate in the net-
work is only 0.5%. However, enabling SACK reduces the retransmission
rate to a rate that is within a close proximity of the imposed loss rate.

A strange incident occurs for some of the protocols though (6 of them,
BIC Plain, HSTCP Plain, H-TCP Plain, Reno Plain, Hybla with SACK,
DSACK, FACK and Westwood with SACK, DSACK). They get a minimum
value which is lower than the imposed delay of the network, and thus
lower than the supposed RTT. This is due to the retransmission of a packet
that has just been sent. Actually, the arrival time of the ACK indicates that
the first transmission in fact arrived safely and within reasonable time at
the receiver. Thus, the retransmission was spurious.

Prior to the unnecessary retransmission of this packet, a considerable
number of retransmissions of successive segments occur (see Figure 3.5,
packets 99490-99500). This causes a time gap between the sending of any
new packets. It is the first packet (packet 99502) sent after these retrans-
missions that is unnecessarily retransmitted (packet 99536) a couple of ms
later (way below the RTT imposed on the network). Prior to this retrans-
mission, an ACK (packet 99526) acknowledging the previous transmitted
packet arrives, cumulatively acknowledging all the retransmitted packets
sent. This ACK is followed by 4 dupACKs (packets 99530, 99531, 99533,
99535), triggered by the previous retransmissions. The problem is that each

32

Connection (192.168.1.2:60745-192.168.2.2:36428)
Retransmission region for packet 99536
99489 PKT t 1500.89 seq 88160505 len 1448
99490 RTR PKT t 1500.89 seq 88093897 len 1448
99491 DUP ACK t 1500.93 ack 88093897
99492 RTR PKT t 1500.93 seq 88095345 len 1448
99493 DUP ACK t 1500.93 ack 88093897
99494 RTR PKT t 1500.93 seq 88096793 len 1448
99495 DUP ACK t 1500.97 ack 88093897
99496 RTR PKT t 1500.97 seq 88098241 len 1448
99497 DUP ACK t 1500.97 ack 88093897
99498 RTR PKT t 1500.97 seq 88099689 len 1448
99499 DUP ACK t 1501.3 ack 88093897
99500 RTR PKT t 1501.3 seq 88101137 len 1448
99501 DUP ACK t 1501.3 ack 88093897
99502 PKT t 1501.3 seq 88161953 len 1448 <-- Transmitted
99503 DUP ACK t 1501.3 ack 88093897
99504 PKT t 1501.3 seq 88163401 len 1448
99505 DUP ACK t 1501.3 ack 88093897
99506 PKT t 1501.3 seq 88164849 len 1448
99507 DUP ACK t 1501.3 ack 88093897
99508 PKT t 1501.3 seq 88166297 len 1448
99509 DUP ACK t 1501.3 ack 88093897
99510 PKT t 1501.3 seq 88167745 len 1448
99511 DUP ACK t 1501.3 ack 88093897
99512 PKT t 1501.3 seq 88169193 len 1448
99513 DUP ACK t 1501.3 ack 88093897
99514 PKT t 1501.3 seq 88170641 len 1448
99515 DUP ACK t 1501.3 ack 88093897
99516 PKT t 1501.3 seq 88172089 len 1448
99517 DUP ACK t 1501.3 ack 88093897
99518 DUP ACK t 1501.3 ack 88093897
99519 DUP ACK t 1501.3 ack 88093897
99520 DUP ACK t 1501.3 ack 88093897
99521 DUP ACK t 1501.3 ack 88093897
99522 DUP ACK t 1501.3 ack 88093897
99523 DUP ACK t 1501.3 ack 88093897
99524 DUP ACK t 1501.3 ack 88093897
99525 DUP ACK t 1501.3 ack 88093897
99526 ACK t 1501.3 ack 88161953
99527 PKT t 1501.3 seq 88173537 len 1448
99528 PKT t 1501.3 seq 88174985 len 1448
99529 PKT t 1501.3 seq 88176433 len 1448
99530 DUP ACK t 1501.34 ack 88161953
99531 DUP ACK t 1501.34 ack 88161953
99532 PKT t 1501.34 seq 88177881 len 1448
99533 DUP ACK t 1501.38 ack 88161953
99534 PKT t 1501.38 seq 88179329 len 1448
99535 DUP ACK t 1501.38 ack 88161953
99536 RTR PKT t 1501.38 seq 88161953 len 1448 <-- Retransmitted
99537 DUP ACK t 1501.71 ack 88161953
99538 ACK t 1501.71 ack 88163401
Retransmission count: 1
Time between first trans and last retrans: 75.915 ms
Time between first trans and final ACK: 408.013 ms

Figure 3.5: Strange minimum value for BIC plain, extracted with
loss_details

33

of these indicates the loss of the packet sent only a couple of ms ago, thus
triggering the retransmission of this packet way too early.

Though this behaviour is quite odd, it does not affect the average RTD,
as this only happens once per connection (twice for plain HSTCP), and
none of RTDs of the involved protocols are among the top values (closer
to the contrary in fact).

The one exception is Hybla with all SACK options enabled (Figure 3.6).
It holds a minimum RTD (371.8 ms) that is a bit below the imposed delay.
However, this is not due to same behaviour as outlined above. This seems
in fact to be the use of New Reno’s partial acknowledgments in practice.
The segment is considered lost and then retransmitted (packet 274070), but
other segments were previously lost and therefore have also retransmis-
sions in flight (packets 274042, 274077). The ACK for these retransmissions
is then received (packet 274078), but it does not cover the last retransmitted
packet (packet 274070). This is because the time passed since the last retrans-
mission took place is below the RTT (371 ms, RTT is approximately 400),
thus the acknowledgment for this retransmission has not had a chance to
arrive yet, but regardless of this, the segment is still instantly retransmitted
again (packet 274079). Approximately 30 ms later, an ACK acknowledging
the just retransmitted packet arrives (packet 274080), probably triggered by
the arrival of the first retransmission (packet 274070), indicating that a spuri-
ous retransmission just took place. The packets from 273994-274040 and
274044-274068 were dupACKs acknowledging the same byte 240157377,
and were replaced with instead.

Thick streams, (wireless) 0 ms delay, 5% loss

A high loss rate and no delay should simulate a wireless LAN (through the
high loss rate), supposedly favourizing Westwood. With no delay, none of
the protocols designed for high BDP networks should have any particular
advantages. This prediction holds for the test results (Table 3.3). Westwood
holds the top value for each option, though it distances itself from the oth-
ers only after the SACK options are enabled.

The SACK option still has a major impact, with a solid increase in through-
put and corresponding decrease in the average RTD. The exceptions are the
still struggling HSTCP protocol, now partly joined by Vegas. This should
be due to Vegas considerate congestion avoidance strategy, heavily penaliz-
ing the protocol when the loss rate is high. Westwood gets the biggest boost
by the enabling of SACK, quintupling the sending rate, further increased
by the enabling of FACK.

Westwood’s results are quite impressive, with an average RTD between
6.4-10.6 ms when the SACK options are enabled. These also hold the lowest
standard deviations with values between 33.1-52.3 ms. The only protocol
that can partly keep up is STCP, with average RTDs of 19.3-25.2 ms with

34

Connection (192.168.1.2:32963-192.168.2.2:53985)
Retransmission region for packet 274079
#273982 PKT t 1414.75 seq 240271769 len 1448
#273983 PKT t 1414.75 seq 240273217 len 1448 <-- Transmitted
#273984 PKT t 1414.75 seq 240274665 len 1448
#273985 PKT t 1414.75 seq 240276113 len 1448
#273986 PKT t 1414.75 seq 240277561 len 1448
#273987 PKT t 1414.75 seq 240279009 len 1448
#273988 PKT t 1414.75 seq 240280457 len 1448
#273989 PKT t 1414.75 seq 240281905 len 1448
#273990 PKT t 1414.75 seq 240283353 len 1448
#273991 DUP ACK t 1414.75 ack 240157377
#273992 RTR PKT t 1414.75 seq 240157377 len 1448
#273993 DUP ACK t 1414.75 ack 240157377
.......
#274041 DUP ACK t 1415.12 ack 240157377
#274042 RTR PKT t 1415.12 seq 240232673 len 1448
#274043 DUP ACK t 1415.12 ack 240157377
.......
#274069 DUP ACK t 1415.15 ack 240157377
#274070 RTR PKT t 1415.15 seq 240273217 len 1448 <-- 1. Retransmission
#274071 DUP ACK t 1415.15 ack 240157377
#274072 DUP ACK t 1415.15 ack 240157377
#274073 DUP ACK t 1415.15 ack 240157377
#274074 DUP ACK t 1415.15 ack 240157377
#274075 DUP ACK t 1415.15 ack 240157377
#274076 DUP ACK t 1415.15 ack 240157377
#274077 RTR PKT t 1415.37 seq 240157377 len 1448
#274078 ACK t 1415.53 ack 240273217
#274079 RTR PKT t 1415.53 seq 240273217 len 1448 <-- 2. Retransmission
#274080 ACK t 1415.56 ack 240284801
Retransmission count: 2
Time between first trans and last retrans: 778.106 ms
Time between first trans and final ACK: 813.944 ms

Figure 3.6: Minimum value for Hybla SACK DSACK FACK, extracted with
loss_details

35

TCP Variation Packet Statistics Retransmission Time Statistics (in ms)

Total Rexmt Rexmt rate Min Max Avg Stddev

BIC P 274 150 14 362 0.05238 0.5 3233.7 53.7 132.0

BIC S 388 617 20 104 0.05173 0.6 3241.1 38.5 111.6

BIC S D 387 099 19 952 0.05154 0.7 5434.5 39.3 118.1

BIC S D F 428 230 21 874 0.05108 0.5 5675.1 35.6 120.3

BIC S F 454 152 23 097 0.05085 0.5 3239.9 34.7 104.8

HIGH-SPEED P 115 261 6 504 0.05642 0.5 2392.1 106.4 160.8

HIGH-SPEED 121 841 6 926 0.05684 0.9 3799.7 93.1 159.9

HIGH-SPEED S D 120 310 6 766 0.05623 0.9 7552.5 95.7 175.9

HIGH-SPEED S D F 117 876 6 526 0.05536 0.9 7488.5 99.3 209.7

HIGH-SPEED S F 122 260 6 808 0.05568 0.9 5473.2 95.4 172.6

H-TCP P 280 497 14 693 0.05238 0.5 3659.7 51.5 127.6

H-TCP S 424 928 21 933 0.05161 0.7 3298.0 35.9 105.5

H-TCP S D 403 847 20 960 0.05190 0.7 6656.7 38.9 115.6

H-TCP S D F 451 341 23 169 0.05133 0.5 2044.6 33.5 98.4

H-TCP S F 455 290 23 221 0.05100 0.5 5888.4 32.8 114.3

HYBLA P 288 316 15 112 0.05241 0.5 2000.1 45.7 104.9

HYBLA S 331 552 17 121 0.05163 0.8 2999.0 41.6 104.7

HYBLA S D 319 418 16 503 0.05166 0.8 3237.9 43.3 112.1

HYBLA S D F 356 801 18 555 0.05200 0.5 1511.7 38.1 98.1

HYBLA S F 359 685 18 684 0.05194 0.5 1512.4 38.0 99.5

RENO P 302 867 15 714 0.05188 0.5 2997.1 46.6 113.5

RENO S 340 097 17 432 0.05125 0.7 13608.2 42.1 188.3

RENO S D 341 468 17 546 0.05138 0.7 6912.4 40.1 121.0

RENO S D F 372 521 19 126 0.05134 0.5 3238.4 36.9 108.0

RENO S F 402 113 20 416 0.05077 0.5 3456.2 34.6 98.8

SCALABLE P 333 953 17 271 0.05171 0.5 3239.4 48.3 121.9

SCALABLE S 590 865 30 321 0.05131 0.7 1896.1 25.2 85.7

SCALABLE S D 630 837 31 971 0.05068 0.7 2544.2 23.2 80.4

SCALABLE S D F 720 229 36 618 0.05084 0.5 3443.3 21.1 87.7

SCALABLE S F 735 812 37 267 0.05064 0.5 5001.4 19.3 79.7

VEGAS P 229 439 12 273 0.05349 0.5 1728.1 56.4 119.9

VEGAS S 235 247 12 562 0.05339 0.6 3415.7 56.6 135.2

VEGAS S D 250 181 13 249 0.05295 0.6 3456.2 52.4 124.7

VEGAS S D F 260 555 13 684 0.05251 0.5 3237.5 49.7 117.4

VEGAS S F 264 405 13 773 0.05209 0.5 2560.2 49.6 115.1

WESTWOOD P 367 687 18 814 0.05116 0.5 6693.5 45.5 131.7

WESTWOOD S 1 356 888 68 474 0.05046 0.5 1728.1 10.6 49.9

WESTWOOD S D 1 359 979 68 399 0.05029 0.6 3229.5 10.4 52.3

WESTWOOD S D F 2 058 230 102 901 0.04999 0.6 1729.0 6.4 33.1

WESTWOOD S F 1 879 806 93 675 0.04983 0.5 1728.1 7.0 38.9

Table 3.3: Thick streams 0 delay, 5% Loss, Retransmission Statistics

36

 0

 50

 100

 150

 200

 250

 300

W
E

S
T

W
O

O
D

 S
-D

-F

V
E

G
A

S
 S

-F

S
C

A
LA

B
LE

 S
-F

R
E

N
O

 S
-F

H
Y

B
LA

 S
-F

H
T

C
P

 S
-F

H
IG

H
S

P
E

E
D

 S

B
IC

 S
-F

R
T

D
 (

in
 m

s)

top protocols

Figure 3.7: The top combination for each variation, thick streams, 0 ms
delay, 5% loss

the SACK options enabled (see Figure 3.7), but with standard deviations
between 79.7-87.7 ms. The other protocols mostly stay in the region 35-
50 ms. Hyblas downfall is due to the lack of delay, as it needs at least a
25 ms RTT to activate it’s improved mechanisms. Otherwise, it acts like the
default New Reno.

Thick streams, (wireless) 50 ms and 100 ms delay, 5% loss

Adding delays of 50 and 100 ms bring things "back to normal". The res-
ults closely resemble those collected for the same settings with 0.5% loss.
The only major difference is the increase of the loss rate causes greater vari-
ations in the RTDs, leading to a higher average and standard deviation for
each protocol. Still, the surroundings seems to be close to the limit of what
some of the protocols can handle satisfactory, as some of the averages and
standard deviations are getting quite high. This is directly related to the
throughput rate, and thus the throughput now have a major influence on
the RTD. Of course, Hybla is benefitting on this.

37

Thick stream test evaluation

The tests were performed, and are thus mainly considered, with respect
to the RTD. When examining the results with respect to this, some but
no dramatic differences between the protocols exist. The Fast Retransmit
mechanism seems to be performing adequately, and is thus the dominant
controlling factor when it comes to the RTD. The retransmission timeout
mechanism is seldom invoked, as should be the case in a thick stream scen-
ario.

Enabling SACK can be confirmed to be a considerable improvement in
every setting, thus it is strongly recommended when available. It’s impact
just increases with the RTT, as it should. FACK provides a further improve-
ment, though a smaller one, and is thus recommended as the preferred
SACK option whenever available.

Throughput only plays a small part in affecting the RTD, but as the
effect is a positive one, it is well worth considering. Thus, Hybla seems like
an excellent choice when the RTT exceeds 25 ms. This could be expected,
as it is the newest protocol and thus has been able to observe the others’
weaknesses and avoid these in it’s proposal. At the other end, HSTCP does
not impress and gives a rather negative impression. Vegas is not as bad, but
it’s considerate tendencies emerge in the high loss scenarios, weakening it’s
impression and strengthening the allegations, presented earlier in Section
2.2, against it.

Otherwise, Westwood makes a fairly good impression, though favoured
in these tests, due to the way packet loss is simulated. Especially in the net-
work setting with no delay and 5% loss, it’s performance is impressive. Of
the remaining high-speed protocols, H-TCP and STCP perform quite well
too, while BIC (default in the Linux 2.6.15 kernel) is a bit disappointing as
it fails to keep up with the others.

Still, the optimization of the RTD seems to be fairly well covered for
thick streams, leaving limited room for further major improvements. This
is of course provided that the right protocol is used in the specific setting.
Not all of the variations perform satisfactory in all settings, but there are
always some of them that do.

3.2.2 Evaluation of the TCP variations for thin streams

To simulate thin streams, netperf was used to limit the number of packets
sent each second to 4 messages of 100 B each. The 4 messages are sent in
one burst. The choice is based on findings in [34], observing that Anarchy
Online traffic was limited to a few packets sent per second, each packet
containing very little data (about 120 B data on average). However, lim-
iting the number of packets means fewer samples that might be lost, thus
fewer retransmissions. Hence, longer time is needed to collect an accept-

38

 0

 100

 200

 300

 400

 500

W
E

S
T

W
O

O
D

 S
-D

-F

V
E

G
A

S
 S

-D

S
C

A
LA

B
LE

 P

R
E

N
O

 P

H
Y

B
LA

 S
-D

-F

H
T

C
P

 S

H
IG

H
S

P
E

E
D

 S

B
IC

 S
-D

R
T

D
 (

in
 m

s)

top protocols

Figure 3.8: The top combination for each variation, Thin Streams, 0 ms
delay, 5% loss

able number of loss events. In order to avoid an escalation of the time
needed to run the tests, the loss rate used was quite high.

Thin streams were tested for a delay of 0, 50, 100 and 200 ms, with a loss
rate of 5 and 10%. For 5% loss, the tests were run for 30 min each, while
20 min were chosen for 10%.

0 ms delay, 5% loss

The results (Table 3.4) show no significant differences between the proto-
cols, at least no indisputable ones.

The Linux 2.6.15 kernel implements the TCP New Reno version. When
a given TCP variation is enabled, only the methods that it has it’s own
modifications for are overridden. Otherwise, it is using the methods already
present (i.e., New Reno’s). When looking at the different variations, they
are only concerned with various strategies for congestion control issues,
in particular for adjusting the cwnd and ssthresh in specific situations. 3
of the 8 protocols tested apply their modifications only in high-speed set-
tings, and otherwise act like Reno (use Reno’s methods, provided Reno is
the implemented default). These are HSTCP, STCP and H-TCP. As it is the
New Reno version which is implemented here, these 3 act like New Reno

39

TCP Variation Packet Statistics Retransmission Time Statistics (in ms)

Total Rexmt Rexmt rate Min Max Avg Stddev

BIC P 3 983 391 0.09816 202.8 2998.9 244.0 192.3

BIC S 3 995 397 0.09937 202.5 816.1 231.6 86.2

BIC S D 4 011 413 0.10296 202.7 816.1 228.5 86.5

BIC S D F 3 994 396 0.09914 212.3 864.1 242.0 84.4

BIC S F 3 972 376 0.09466 200.9 816.1 228.8 92.1

HIGH-SPEED P 3 999 409 0.10227 203.0 1632.1 239.2 118.1

HIGH-SPEED S 3 960 357 0.09015 201.3 816.1 220.9 62.6

HIGH-SPEED S D 4 034 422 0.10461 201.2 816.1 231.4 85.2

HIGH-SPEED S D F 3 969 366 0.09221 202.6 816.1 227.2 75.0

HIGH-SPEED S F 3 983 381 0.09565 202.4 816.1 231.1 82.6

H-TCP P 4 008 406 0.10129 203.0 816.1 220.4 66.0

H-TCP S 3 938 342 0.08684 203.3 816.1 227.7 85.1

H-TCP S D 3 980 380 0.09547 202.8 816.1 223.7 70.7

H-TCP S D F 4 004 407 0.10164 203.0 816.1 227.4 82.0

H-TCP S F 3 984 384 0.09638 202.4 816.1 231.0 86.2

HYBLA P 3 988 392 0.09829 200.2 1632.1 232.9 118.6

HYBLA S 3 978 391 0.09829 200.4 3264.2 241.4 190.7

HYBLA S D 4 006 389 0.09710 202.8 816.1 223.7 65.8

HYBLA S D F 3 971 363 0.09141 202.1 408.0 218.4 52.7

HYBLA S F 4 009 408 0.10177 202.8 816.1 226.8 73.6

RENO P 4 039 438 0.10844 201.1 816.1 224.7 70.7

RENO S 3 979 383 0.09625 205.7 1664.1 238.8 116.9

RENO S D 4 000 399 0.09975 202.5 816.1 229.0 79.9

RENO S D F 3 989 393 0.09852 214.2 3456.2 258.6 216.2

RENO S F 3 998 402 0.10055 213.8 864.1 245.4 95.0

SCALABLE P 3 965 361 0.09104 202.6 816.1 221.3 63.1

SCALABLE S 3 950 384 0.09721 214.4 12240.8 294.0 699.0

SCALABLE S D 3 997 401 0.10032 200.2 1632.1 232.8 109.4

SCALABLE S D F 3 982 385 0.09668 202.5 1632.1 228.7 104.8

SCALABLE S F 4 019 405 0.10077 202.2 816.1 222.4 68.6

VEGAS P 3 932 343 0.08723 201.8 1632.1 239.0 155.6

VEGAS S 3 987 386 0.09681 200.4 816.1 227.2 74.5

VEGAS S D 3 970 365 0.09193 202.3 816.1 223.9 71.4

VEGAS S D F 3 975 373 0.09383 214.8 864.1 236.7 74.8

VEGAS S F 3 997 382 0.09557 213.4 864.1 235.6 73.3

WESTWOOD P 3 986 387 0.09708 214.6 864.1 242.6 89.4

WESTWOOD S 3 976 367 0.09230 213.6 864.1 237.6 80.9

WESTWODD S D 4 030 434 0.10769 202.6 816.1 232.1 88.7

WESTWOOD S D F 3 968 365 0.09198 202.3 816.0 221.7 63.5

WESTWOOD S F 3 963 366 0.09235 201.4 1632.1 234.5 110.4

Table 3.4: Thin stream (0 ms delay, 5% loss) Retransmission Statistics

40

in this thin stream setting. However, even though the other 4 variations use
their own modified methods, this should not make any difference as they
are related to adjusting the cwnd and ssthresh. In this thin stream setting,
with a needed throughput of only 400 Bps, the amount of data requested
to be transmitted is below the segment size and should therefore typically
be far less than the cwnd, regardless of the variation used. Thus, the differ-
ent variations’ various adjustments do not have any impact in this setting,
and their behaviour should be approximately the same. This should pro-
duce approximately the same results, only with individual test variations
separating them. Figure 3.8 visualizes this fact quite well.

Some relevant observations can still be made. SACK does not necessar-
ily decrease the RTD in this setting, 4 of the protocols get a considerable in-
crease instead. And there is no clear pattern indicating improvement when
any of the SACK option combinations are enabled. Plain H-TCP (220.4 ms)
and Reno (224.7 ms) get almost as good results as the top value, Hybla
(218.4 ms) with all SACK options enabled. The interval between top and
bottom values is 75.6 ms, but the bottom value, STCP with SACK, contains
a potential outlier for the maximum (will soon be explained). Removing
this value from the result drops the average from 294.0 to 262.8 ms, redu-
cing the interval to 44.4 ms. The minimum standard deviation is 52.7 ms,
making it difficult do draw any conclusions.

The one extremely interesting fact is that none of the protocols achieve
an RTD below 200 ms, even though there is no delay. Presumably, this in-
dicates the invocation of the RTO as the only detector of packet loss (which
is set to minimum Hz/5 which means 200 ms). This makes sense, since
only 4 messages are sent per second. The messages are transmitted in one
burst each second, making it possible to bundle several messages into one
packet if allowed by the cwnd size. This can be seen in the results, as the
number of packets transmitted stays around 3900 (this number include re-
transmitted packets). The number to be expected if each message was sent
in an individual packet should be 1800 ∗ 4 = 7200, added with the number
of retransmitted packets.

Since the maximum size needed to be sent within one cwnd is 400 B
(all 4 messages) and the MSS of one packet is 1448 B, only one packet will
be sent per cwnd independently of it’s size. If the cwnd is less than 400 B,
all the allowed data will still be transmitted in a single packet. Thus, a
dupACK is seldom triggered as it requires the reception of a second packet
succeeding a packet loss. In fact, most of the runs did not contain a single
dupACK. And when there are almost no dupACKs, Fast Retransmit will
not be triggered, leaving the RTO as the only means to discover packet
loss.

Using loss_details, detailed loss information could be extracted, but
additionally, this provided a good impression of the traffic flow. It showed
that the messages were transmitted in 2 packets, the first contained only the

41

Connection (192.168.1.2:38888-192.168.2.2:55066)
Retransmission region for packet 26
22 PKT t 8.00558 seq 2001 len 100
23 ACK t 8.00583 ack 2101
24 PKT t 8.00587 seq 2101 len 300 <-- Transmitted
25 PKT t 12.0058 seq 2401 len 1448
26 RTR PKT t 14.1258 seq 2101 len 300 <-- 1. Retransmission
27 RTR PKT t 26.3666 seq 2101 len 300 <-- 2. Retransmission
28 ACK t 26.3669 ack 3849
Retransmission count: 2
Time between first trans and last retrans: 18360.7 ms
Time between first trans and final ACK: 18361.1 ms

Figure 3.9: Strange maximum value for STCP with SACK, extracted with
loss_details

first message, while the second contained the rest. Additionally, the second
packet was not transmitted until the first one had been acknowledged.

When an RTO occurs, which will be quite frequent in the absence of Fast
Retransmit, the unacknowledged packet is retransmitted and the cwnd is
reset to 1. The RTO is doubled [13] until an RTT sample can be calculated
based on a received ACK. Thus, the RTO increases exponentially for each
retransmission of the same segment (Exponential Backoff), explaining the
high maximum values for the tests. Most of these values correspond to
their individual test’s maximum number of retransmissions. However, the
average RTDs stay close to the minimum value, indicating that the Expo-
nential Backoff RTO is not triggered very often.

It is worth noting that the latency experienced by the user would be
considerably higher than the maximum value shown in the tables. If it
represents the first retransmission, only the RTT needs to be added to the
value. However, if this is the second retransmission, the time elapsed for
the first retransmission must be added as well, in addition to the RTT. If it
is the third, the time for the first and second retransmission must be added,
and so on.

The only protocols which diverge dramatically are plain BIC and STCP
with SACK in their first retransmission scenarios. BIC has to wait 3 seconds
for the RTO to expire in it’s first retransmission scenario. This is because the
RTO is initally set to 3 s, as recommended in [9]. If packet loss occurs before
any RTO estimates can be made (requires RTT samples), the first RTD will
be approximately 3 s. This is what happens in BIC’s case.

STCP’s value is a bit more odd, as it for some reason has to wait 6(!)
seconds for the RTO to expire in it’s first retransmission scenario (Figure
3.9). To make it worse, the retransmitted packet is lost, forcing the sender
to wait another 12 seconds due to the doubling of the RTO. As the first
RTO is exactly twice that of the supposed initialized value, it seems that the
RTO for some reason is doubled without any retransmissions having been

42

 0

 100

 200

 300

 400

 500

 600

W
E

S
T

W
O

O
D

 P

V
E

G
A

S
 S

S
C

A
LA

B
LE

 S

R
E

N
O

 S
-D

-F

H
Y

B
LA

 S
-D

H
T

C
P

 S
 D

H
IG

H
S

P
E

E
D

 P

B
IC

 S
-F

R
T

D
 (

in
 m

s)

top protocols

Figure 3.10: The top combination for each variation, Thin Streams, 50 ms
delay, 5% loss

triggered. The total latency experienced by the user, would in this case
have been approximately 18 s. However, this "abnormality" has no effect
as it is the only aberration that can be found in the results. As mentioned
earlier, removing the extreme value from STCP drops it’s RTD average to a
level within a close proximity of the others.

Since the RTO is the only detector of packet loss, the difference between
the protocols is limited. The RTO is independent of any of their individual
enhancements, and only affected by the RTT, which has nothing to do with
any of the protocols, and thus does not vary among them. The small vari-
ations that can be seen are due to the protocols’ varying maximum RTD
value, i.e., the maximum number of retransmissions of one segment. This
might be a bit arbitrary as the drop sequence is not the same for the indi-
vidual runs, only the drop frequency will be approximately equal. Thus, a
continuing loss of the retransmissions for one segment will lead to a high
maximum RTD value, resulting in a higher average RTD.

50 ms delay, 5% loss

The results (Table 3.5 and Figure 3.10) deviate little from those found in the
previous setting. The differences get even smaller in this setting, except for

43

TCP Variation Packet Statistics Retransmission Time Statistics (in ms)

Total Rexmt Rexmt rate Min Max Avg Stddev

BIC P 3 867 387 0.10007 308.1 10759.2 439.9 849.1

BIC S 3 890 383 0.09845 308.1 7044.6 406.7 577.6

BIC S D 3 897 352 0.09032 308.1 11108.4 381.9 600.6

BIC S D F 3 942 398 0.10096 308.1 2996.5 359.7 185.3

BIC S F 3 907 363 0.09291 308.1 2528.2 358.2 175.7

HIGH-SPEED P 3 946 403 0.10212 308.1 1264.1 352.2 118.1

HIGH-SPEED S 3 927 391 0.09956 308.1 2528.2 364.0 177.9

HIGH-SPEED S D 3 922 388 0.09892 308.1 1264.1 358.6 141.1

HIGH-SPEED S D F 3 930 411 0.10458 308.1 4992.3 375.9 290.2

HIGH-SPEED S F 3 910 369 0.09437 308.1 2997.7 360.6 182.2

H-TCP P 3 915 369 0.09425 308.1 2528.2 354.6 165.9

H-TCP S 3 947 408 0.10336 308.1 2528.2 356.6 167.3

H-TCP S D 3 920 364 0.09285 308.1 1264.1 348.1 114.5

H-TCP S D F 3 876 352 0.09081 308.1 3064.2 382.7 250.9

H-TCP S F 3 916 395 0.10086 308.1 2824.2 377.7 234.4

HYBLA P 3 914 375 0.09580 308.1 1264.1 365.0 155.4

HYBLA S 3 937 398 0.10109 308.1 2528.2 360.5 177.1

HYBLA S D 3 974 424 0.10669 308.1 1264.1 347.3 125.1

HYBLA S D F 3 967 415 0.10461 308.1 2528.2 350.8 162.6

HYBLA S F 3 921 364 0.09283 308.1 1264.1 348.6 125.1

RENO P 3 920 393 0.10025 304.1 2496.2 360.2 176.5

RENO S 3 917 393 0.10033 308.1 1264.1 364.7 155.1

RENO S D 3 962 416 0.10499 308.1 1264.1 344.5 100.3

RENO S D F 3 953 397 0.10043 308.1 632.0 340.1 86.4

RENO S F 3 916 380 0.09703 308.1 5056.3 365.9 291.4

SCALABLE P 3 917 373 0.09522 308.1 1264.1 352.4 124.0

SCALABLE S 3 968 418 0.10534 308.1 1264.1 342.1 104.9

SCALABLE S D 3 917 368 0.09394 308.1 1264.1 350.5 122.7

SCALABLE S D F 3 922 373 0.09510 308.1 1264.1 347.8 112.7

SCALABLE S F 3 939 386 0.09799 308.1 1264.1 345.5 109.6

VEGAS P 3 914 381 0.09734 308.1 1264.1 361.8 154.2

VEGAS S 3 939 396 0.10053 308.1 2528.2 355.1 167.4

VEGAS S D 3 888 346 0.08899 308.1 2528.2 359.4 172.2

VEGAS S D F 3 906 369 0.09447 308.1 2998.1 368.7 246.9

VEGAS S F 3 922 377 0.09612 308.1 1264.1 358.5 147.3

WESTWOOD P 3 938 381 0.09674 304.1 624.0 338.4 90.1

WESTWOOD S 3 919 396 0.10104 308.1 1264.1 358.1 128.6

WESTWODD S D 3 907 350 0.08958 308.1 1264.1 349.5 122.9

WESTWOOD S D F 3 967 423 0.10662 308.1 1264.1 347.6 123.0

WESTWOOD S F 3 947 412 0.10438 308.1 1264.1 350.7 107.7

Table 3.5: Thin stream (50 ms delay, 5% loss) Retransmission Statistics

44

Connection (192.168.1.2:34765-192.168.2.2:40947)
Retransmission region for packet 9
2 PKT t 4.31193 seq 1 len 100 <-- Transmitted
3 PKT t 7.31359 seq 101 len 1448
4 DUP ACK t 7.41585 ack 1
5 PKT t 11.3138 seq 1549 len 1448
6 DUP ACK t 11.4201 ack 1
7 PKT t 15.3141 seq 2997 len 1448
8 DUP ACK t 15.4203 ack 1
9 RTR PKT t 15.4203 seq 1 len 100 <-- Retransmitted
10 ACK t 15.5243 ack 4445
Retransmission count: 1
Time between first trans and last retrans: 11108.4 ms
Time between first trans and final ACK: 11212.4 ms

Figure 3.11: Strange maximum value for BIC with SACK DSACK, extracted
with loss_details

BIC which gets some pretty high values (439.9 ms at the most), until FACK
is enabled. However, this is due to similar abnormalities as the ones exper-
ienced by STCP (with SACK) and BIC in the previous setting. Additionally,
the succeeding retransmissions are influenced by the extreme RTO value,
which affects the following RTOs, and thus the RTD. H-TCP with FACK
also experiences the abnormality, but the RTO value is not as extreme as
BIC’s, and thus the average RTD is not as heavily penalized.

Interestingly enough in this scenario, a packet is sent every 4 seconds
while waiting for the ACK, containing 1448 B (Figure 3.11, packets 3, 5, 7).
This seems to occur when the messages requested to be transmitted ex-
ceed the MSS of one packet (1448 B), thus triggering the transmission of
the packet. When a packet containing only the first message in a burst is
lost, a transmission can be triggered after 3 seconds, since 3 messages of
100 B each are still waiting to be transmitted, and 3 additional bursts of
400 B each are then more than enough to fill a packet. The RTO is for some
reason not triggered even though 4 s pass between each transmission of a
full packet, indicating that the RTO in this case must have been higher than
4 s. Additionally, it is then reset. This transmission will result in the recep-
tion of a dupACK (happens here, packets 4, 6, 8), if neither the packet nor
the dupACK are lost on the way. Thus, Fast Retransmit might eventually
be triggered if the RTO does not expire before 3 dupACKs are received, but
since the sender is only transmitting once every 4 seconds (at best 3), it is
not particularly fast. This is the case for BIC with SACK and DSACK.

For BIC with SACK, only 1 full packet is sent and 1 dupACK for this is
received before the RTO suddenly goes off, 3 seconds after the transmission
of the full packet. However, 4 s have still passed before the full packet was
sent without the RTO going off. When the full packet is sent the RTO is
reset to 3 s.

Common for all runs affected by some abnormality is that it is in their

45

first retransmission scenario the problems arise. This strongly indicates that
the problems are related to the initial 3 s value of the RTO. The simplest and
least penalizing incident is if the RTO is triggered after 3 s, or close to this
value. The following RTO samples are affected by the initial value, and
thus packet loss in this phase will not be as quickly discovered. Addition-
ally, exponential backoff in this phase causes heavy penalization, but these
values are all explainable.

It is considerably more difficult to explain why the RTO gets above 3 s
initially. For some reason the RTO is higher, even though no prior retrans-
missions have taken place, that could have increased the value. However,
accepting that this occurs explain the successive behaviour. These abnor-
malities are occasionally present throughout the tests.

The minimum RTD increases approximately with the delay introduced,
as expected. The average increases a bit more with the top value being
338.4 (plain Westwood), 120 ms higher than in the previous setting. The in-
terval between top and bottom is 101.5 ms, but excluding BIC’s high values
drops the interval to 44.3 ms, and the minimum standard deviation is still
86.4 ms. The SACK options fail to produce any detectable improvements
in this setting as well.

100 and 200 ms delay, 5% loss

There is nothing new to report in these settings, except that as the RTO
increases with the delay, and that the effect of multiple retransmissions of
the same segment becomes more significant.

0 ms delay, 10% loss

Increasing the loss rate to 10 % should result in a higher number of re-
transmissions, providing more samples. Thus, the time needed to collect
the necessary number of samples is shorter and the length of each run was
reduced from 30 to 20 minutes.

Doubling the loss rate has a considerable impact on the range of val-
ues, leading to a dispersal of the values (Figure 3.12). However, this makes
sense, since the higher loss rate means more packets lost, which should
cause a higher number of retransmissions of the same packet. This results
in more dispersed RTD samples, reflected in the higher maximum RTD
value. Additionally, some of the runs suffer from the by now familiar ab-
normality.

But as for the others, there are no significant differences between the
protocols. HSTCP with SACK is at the top with 247.1 ms, also holding the
minimum standard deviation of 116.2 ms. Removing the extreme samples
from the affected runs drops their RTD average down among the others.
The remaining differences between the protocols can be explained by the

46

 0

 100

 200

 300

 400

 500

 600

 700

W
E

S
T

W
O

O
D

 S

V
E

G
A

S
 S

-D
-F

S
C

A
LA

B
LE

 P

R
E

N
O

 S
-D

H
Y

B
LA

 P

H
T

C
P

 S

H
IG

H
S

P
E

E
D

 S

B
IC

 S
-D

R
T

D
 (

in
 m

s)

top protocols

Figure 3.12: The top combination for each variation, Thin Streams, 0 ms
delay, 10% loss

protocols’ varying maximum RTD value, as ranking the protocols by aver-
age or maximum RTD produces more or less the same result list.

50, 100 and 200 ms delay, 10% loss

As this remains the case for the following settings, there is no need to go
into details for any of these. They do not provide any new information. Fig-
ure 3.13 provides a good representation for the plots, with similar averages
and high standard deviations.

Thin streams test evaluation

For the thin stream settings, it is hard to find any differences between the
protocols. That is, some differences exist, but they are not at all consistent
and seem to be arbitrary for the settings. It seems quite random which one
ends up at the top in each setting, as no protocol remains among the top
protocols throughout the tests.

However, this is expected as none of them are designed for thin streams,
thus none of them contain any advantages compared to the others. As men-
tioned earlier, most of them are designed for high-speed environments, and

47

 0

 200

 400

 600

 800

 1000

W
E

S
T

W
O

O
D

 P

V
E

G
A

S
 S

S
C

A
LA

B
LE

 S
-D

-F

R
E

N
O

 S
-D

-F

H
Y

B
LA

 P

H
T

C
P

 S
-D

H
IG

H
S

P
E

E
D

 S

B
IC

 S
-D

R
T

D
 (

in
 m

s)

top protocols

Figure 3.13: The top combination for each variation, Thin Streams, 100 ms
delay, 10% loss

a bigger cwnd does not make any difference in these thin stream settings.
Additionally, some of them act like New Reno in these specific settings.
The differences that can be seen are due to arbitrary incidents, uncontrol-
lable elements in the tests, e.g. the difference in the loss sequence.

The most relevant observation from these tests is the total absence of
the Fast Retransmit mechanism, and the RTO as the means of detecting
packet loss. Together with the unfortunate effects of expontential backoff,
this means that there is a huge potential for improvements. Another im-
portant issue is the limited reception of ACKs, as only a few packets are
sent at a time. As the extended loss detection mechanisms of the TCP pro-
tocols depend on the reception of ACKs, this is essential to keep in mind
when considering possible enhancements.

As mentioned in the previous paragraph, a relevant issue present in
these tests is the high maximum RTDs, with values of a considerable num-
ber of seconds, more than high enough to affect a user’s perception of qual-
ity. Despite the fact that these values do not occur frequently, their mere
presence has a strong influence on perceived quality, and as a consequence
stringent latency is not achievable in these scenarios. As an example, a
delay of say 20 s is totally unacceptable for users playing interactive games.
Similarly, for users playing in an interactive, virtual reality, it is important

48

to maintain a (roughly) consistent view. High delays could cause some
users to have an inconsistent view of the virtual world, which could have
unfortunate consequences.

Some limitations of the tests performed exist, e.g., the way thin streams
are simulated gives only 1 transmitted packet per cwnd, which more or
less annihilate dupACKs. Thus, dupACK-related enhancements cannot be
tested with exactly the same parameters. However, the primary goal of the
tests were to test the thin stream performance, which has been done. The
poor behaviour experienced for this kind of streams were still revealed,
even though some tests could have been performed slightly different to
ease potential comparisons between recorded performance and proposed
enhancement tests, requiring certain demands to be fulfilled in order to
work properly. Slightly different tests should be run to test the performance
for such enhancements, but they should still be comparable with the earlier
tests.

3.3 Summary

In this chapter, extensive tests have been presented to examine the perform-
ance, and especially the RTD, of the different TCP variations present in the
Linux 2.6.15 kernel. The variations were tested for 2 types of streams.

The thick stream testing provided us with a thorough impression of
how well the individual variations performed compared to each other. The
RTD differences between the protocols were related to the performance.
The SACK and FACK options provided considerable improvements, and
should be used whenever available. As Hybla showed the best perform-
ance, and had the lowest RTD, it is the recommended variation when avail-
able. However, the Fast Retransmit mechanism keeps the RTD fairly low
for this sort of stream, regardless of the variation used. Thus, the optimiz-
ation of the RTD (i.e., minimization) is well covered for thick streams.

No significant differences between the protocols could be detected in
the thin stream settings. However, this was expected since the protocols
behaviour should be more or less the same in these settings. The import-
ant discovery here was the absence of dupACKs, and thus the RTO as the
only means of detecting packet loss. As the preferred packet loss detec-
tion mechanism, Fast Retransmit, was not invoked in these settings, this
resulted in a high average RTD, and additionally, in some extremely high
maximum values (due to the RTO’s exponential backoff).

As this chapter has revealed serious weaknesses concerning the packet
loss detection mechanisms for thin streams, we introduce several enhance-
ments to improve the performance in thin stream settings in the following
chapter.

49

Chapter 4

Proposed enhancements

The results of the previous chapter showed that there was a great need for
improvements in thin stream settings. Thus, based on these results, we
consider several enhancements to TCP in a thin stream scenario. As we
have Internet gaming in mind, the enhancements proposed are sender-side
modifications only (see Section 1.2).

Since most of the enhancements proposed in this section should only
be used in a thin stream setting, it is essential to provide a thorough defin-
ition of the term thin stream, and a justification of this. It is necessary to
come up with a means for determining when a stream is thin. I.e. absolute
requirements that must be fulfilled in order to classify the stream as thin.
These requirements must be measurable in order to be tested.

The term thin stream is somewhat vague, but typical characteristics of
thin streams involve limited sending of packets, often with a limited pay-
load as well, and additionally intermediate pauses when there is no data
to transfer. It is essential to identify the relevant characteristics of thin
streams, since they limit the usual packet loss detection mechanisms. Thus,
we must examine these and consider them in order to provide an optim-
ized performance in this setting as well. Thus, the enhancements must be
customized to these characteristics.

The thickness of the stream can be determined based on the number of
packets that have been sent but not acknowledged, also called the packets
that are in flight. This is the best measure to determine if the stream is thin,
as a limited number of packets in flight subsequently limits the invocation
frequency of the Fast Retransmit mechanism, which is the least penaliz-
ing mechanism when it comes to handling packet loss. Additionally, it is
potentially a lot faster than the retransmission timeout alternative.

In order to trigger Fast Retransmit, 3 dupACKs are required by the
sender. Thus, at least 4 packets need to be in flight at the time of detec-
tion, as 1 packet must be lost and 3 additional packets are required to each
create a dupACK. Thus, a stream can definitely be classified as thin if it has

50

less than 4 packets in flight.
However, if 4 packets are in flight, Fast Retransmit will only be invoked

if it is the first packet that is lost. Additionally, the following 3 packets must
be received successfully, and none of the corresponding dupACKs must be
lost on their way to the sender. Otherwise, the sender is forced to wait until
at least one other packet is transmitted that can create another dupACK. If
there is a time interval between the sending of packets, this delay could be
considerable, maybe even long enough for the RTO to expire in the mean
time. Time intervals between sending of packets are quite common in thin
stream settings, and thus this raises a serious problem for the Fast Retrans-
mit invocation. To take at least some measure against this problem, we use
the following thin stream definition in these experiments:

A stream is thin if it has 4 or fewer packets in flight

However, this value is easily tunable if another value is found to be more
reasonable.

Considerable time intervals between the sending of packets are not an
absolute requirement to define a stream as thin, but it is a typical feature of
this type of stream. Thus, it should be taken into account when considering
possible improvements. The burstiness of the stream might vary through-
out the connection, meaning that both time intervals between sending of
data and the amount of data (and thus subsequently the amount of pack-
ets) transferred in one burst typically vary. This introduces another com-
mon feature in thin streams. The amount of data transferred at a given time
is often small, typically far less than the MSS, and this is worth examining
when considering possible improvements.

4.1 Removal of the exponential backoff mechanism

The simplest enhancement to improve thin stream performance would be
the elimination of the Exponential Backoff mechanism. When a stream is
thin, this will not have any major impact on either fairness or the network
traffic. The streams will not gain anything as far as throughput is concerned
as they have a limited sending rate anyway (by definition of being thin).

The high maximum values, regardless of their origin, will have a massive
influence if we look at game perception, as a pause of 15 s will be quite de-
tectable and probably highly annoying. Thus, it is quite relevant to remove
these high values to obtain considerably more stringent deviations in the
RTD. Turning off exponential backoff should provide this nicely. Thus, for
thin streams the number of retransmissions will not have any influence on
the RTO value.

Even though this will be quite efficient, it might not be the best solution,
as an RTO resets the cwnd and slow-start is entered. Thus, if possible,

51

retransmissions should be triggered by some other means. Some proposals
are presented in the following sections.

4.2 Implementation of "thin stream Fast Retransmit"

The ideal enhancement would be a Fast Retransmit mechanism that works
in thin stream settings. To expect that it could be invoked as often as the
regular Fast Retransmit for thick streams might however be unrealistic as
this would require a steady, continuing generation of dupACKs. Due to the
thinness of the streams, it is unlikely that a dupACK would be generated
for many of the packet loss incidents. However, the number of dupACKs
created during a connection could still be considerable. Incorporating some
sort of mechanism that utilizes these dupACKs will still be a great benefit,
as retransmissions triggered by dupACKs potentially can be much faster
than the retransmission triggered by a retransmission timeout (and slow-
start will be avoided, even though this might not always be as important
for thin streams).

4.2.1 The Vegas modification

Vegas’ proposed improved Fast Retransmit mechanism seems promising
in order to improve the retransmission latency further. A timeout check
for each dupACK would allow a retransmission to be triggered prior to the
reception of 3 dupACKs, possibly on the reception of the first one. This
would increase the chances of Fast Retransmit being invoked even in thin
stream settings.

However, it will be time-consuming to include, as this mechanism might
not just be added as an extension of the Vegas code, due to the implement-
ation architecture of the TCP protocol in the Linux 2.6.15 kernel.

The Linux TCP protocol implementation is open for several different
suggestions (the TCP variations) about how to handle congestion control.
This is provided by allowing certain specified methods to be replaced by
alternative ones. These alternative methods (for a given TCP variation)
are registered with TCP and can then be invoked. The methods which are
replaceable are related to congestion control issues, as it is this the TCP
variations are meant to be addressing, but the basics, RTO and Fast Re-
transmit, are not replaceable. As a complete Vegas extension is additionally
concerned with Fast Retransmit, this is not plugable with the current TCP
implementation in the Linux kernel, it does not exist today.

Additionally, implementing this modification as part of the Vegas mod-
ule could constrain it’s performance and impression in our thin stream
scenario, as it would suffer from the potential drawbacks of Vegas’ con-
gestion avoidance mechanism.

52

However, incorporating it as a general mechanism in the extensive TCP
protocol is extremely time-consuming, and seems quite excessive as it might
not be considered beneficial in all scenarios. For thicker streams one might
have to include spurious retransmissions [25] in the consideration.

TCP attempts to avoid (or at least minimize) spurious retransmissions
as they waste network resources, but the Vegas modification could lead to
an increased number of these. Minimizing spurious retransmissions and
the RTD seems to be goals opposed to one another. The improvement of
one of them will typically cause a decline of the other. It depends on which
of them is found to be most essential for a particular scenario, as it is diffi-
cult for them to coexist and still perform optimally individually.

Spurious retransmissions will have the biggest impact for thick streams
as they transmit a high amount of packets. However, in this scenario the
original Fast Retransmit should be invoked fairly early, and it might not
be devastating to wait for this invocation instead. Thus, a Fast Retransmit
modification is most essential for thinner streams (we know this already..),
and the number of spurious retransmissions will then be lower in this case.
A couple of unnecessary retransmissions might not have that much of an
impact on network traffic. However, implementing the Vegas modification
for thin stream use only does not seem to be worth the trouble. It will be
extremely challenging and, depending on the timeout value, the stream
might still need to wait for 3 dupACKs anyway. Thus, the Vegas modi-
fication is not implemented for this thesis, and another simpler scheme is
proposed instead in the next section.

4.2.2 Modified Fast Retransmit for thin stream use only

The Fast Retransmit mechanism is triggered after n dupACKs are received,
and n is usually 3 (frexmt_thresh, see Section 2.1). A scheme to adjust this
mechanism for thin streams settings could be to reduce n. As the num-
ber of dupACKs in thin stream settings is limited, it makes sense to utilize
them whenever one occurs, n is therefore reduced to one. However, as this
should only be done for thin streams (otherwise a lot of spurious retrans-
missions would be triggered), the implementation should be flexible, and
able to adapt to changes in the streams’ thickness. Thus, it is not enough to
just change the frexmt_thresh value, as this will make the stream unable to
adapt. The approach taken here is to adjust the frexmt_thresh dynamically,
where the number of dupACKs needed in order to trigger a retransmission
will depend on the current thickness of the stream. If the stream currently is
considered thicker than the thin stream definition, the traditional approach
is taken, waiting for the 3 musketeers to save the day (waiting for the usual
3 dupACKs), otherwise Fast Retransmit is triggered on the reception of the
first dupACK.

This idea could be expanded to include a Fast Retransmit invocation

53

for the reception of 2 dupACKs, which would then be triggered for an-
other specific stream thickness. It would then be necessary to define a
"chubby/slim stream", ranging from the thin stream limit to an appropri-
ate threshold when the stream is considered thick. Then, the transition to
the original Fast Retransmit mechanism should be carried out. Implement-
ing this would provide a dynamic adaption of the Fast Retransmit strategy,
which would be able to adjust it’s invocation requirements depending on
the streams nature. Thus, as the stream thickness increases, so does the
conditions for the Fast Retransmit mechanism invocation. This is however
not implemented in this thesis.

It is important to keep in mind that even though Fast Retransmit can
be a lot faster than an RTO (potentially just above the RTT), provided that
the dupACK generation is fast, this is not necessary so. Additionally, it is
essential to remember that dupACKs might be lost as well, delaying the
Fast Retransmit invocation. This is possibly devastating for the Fast Re-
transmit invocation if there is a considerable time interval until the next
transmission.

4.3 Fill every packet sent (or fill each retransmitted

packet)

As mentioned earlier, the invocation of the Fast Retransmit mechanism de-
pends entirely on the generation of dupACKs, and thus their limited pres-
ence in thin streams constrains it’s influence. However, as the RTO and the
Fast Retransmit mechanisms are the incorporated means to discover packet
loss, there is little more that can be done in order to reduce the RTD further.
Thus, as the delay of the retransmission has been reduced, the attention
turns towards reducing the number of retransmissions. And additionally,
to reduce the possibility of retransmissions of successive segments being
needed when multiple packet loss occur. That is, reduce the possibility
of another retransmission (of a succeeding segment) following the retrans-
mission of this segment being needed, as this retransmission will extend
the time the receiver will have to wait before being able to deliver the data
to the application.

Thin streams are often not only limited in the number of packets trans-
mitted, but also in the amount of data transmitted in each packet. The
amount of data is often considerably smaller than the MSS. Thus, there is
more room available in the packet that could be exploited.

4.3.1 Piggybacking in original packets (Fill every packet sent)

A promising scheme could be to fill every packet sent on the network to
the limit. That is, if the packet to be sent only contains a limited amount of

54

1 /* Check segment sequence number for validity.
*
* Segment controls are considered valid, if the segment
* fits to the window after truncation to the window.

5 * Acceptability of data (and SYN, FIN, of course) is
* checked separately.
* See tcp_data_queue(), for example.
*
* Also, controls (RST is main one) are accepted using RCV.WUP

10 * instead of RCV.NXT. Peer still did not advance his SND.UNA
* when we delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
* (borrowed from freebsd)
*/

15 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq,
u32 end_seq)

{
return !before(end_seq, tp->rcv_wup) &&

!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
20 }

Figure 4.1: Sequence number validity check

data (less than MSS), the rest of the packet could be filled with previously
sent, but still unacknowledged data. This does not result in any increased
routing costs on the network, as there is no increase in the number of pack-
ets, only in the number of bytes. It does, however, improve the possibility
of a successful reception of the data without the invocation of the retrans-
mission mechanisms.

However, this would mean sending a lot of packets with the same se-
quence number (starting byte), but different length. This requires the re-
ceiver to check for both sequence number and length when it is processing
the packets. If it just checks the sequence number, only the first packet will
be successfully received, the others (with the same sequence number) will
be discarded as duplicates (as the receiver now expects a later sequence
number). The TCP implementation in the Linux 2.6.15 kernel checks both
sequence number and length (Figure 4.1), and thus this should be possible
to implement. However, due to the limitation of the disposable time for this
thesis, this modification is not implemented here. It is however strongly re-
commended that this is done, as this should have a significant effect on the
thin stream performance.

55

4.3.2 Piggybacking in retransmitted packets (Fill every retrans-
mitted packet)

A scheme that should work is to fill each retransmitted packet to the limit.
That is, when a retransmission occurs, if there is more room in the packet,
this is filled with data sent after the segment that is now being retransmit-
ted. This reduces the possibility of another retransmission succeeding this
one, if multiple packet losses occurred.

This scheme could be expanded to include retransmission of all addi-
tional unacknowledged data that did not fit in this packet as well, at least as
many as the cwnd allows. As this concept is only to be used in thin stream
settings, the number of additional packets will not be many, and thus, it
should not have any major impact on the network traffic. It will mean
at most a retransmission of (′the de f inition o f thin streams limit′ − 1)
additional packets (the triggered retransmission is of course not included,
hence minus 1). This will reduce the chances of several retransmissions of
successive segments being required when multiple packet losses occur.

However, since thin streams typically do not carry a lot of data in the
transmitted packets, the first modification might work quite well, and will
in most of the cases cover all the unacknowledged packets, thus question-
ing the necessity of the second expansion. Thus, it is not implemented in
this thesis.

Since thin streams typically transmit data in intervals, there might be
a lot of occurrences when there is no unacknowledged data to add to the
packets, and so this mechanism might not be invoked often. Additionally,
there is a substantial chance that the original of the added segment success-
fully arrived at the receiver, and in that case the addition of this segment
to another retransmission does not have any effect. Thus, this might not
have a dramatic impact on the logistics of the stream, but when it does,
it provides a positive effect, and should improve game performance, or at
least avoid a quality reduction detection from the user.

4.4 Summary

The previous chapter revealed considerable room for improvements in thin
stream settings, and several enhancements were thus proposed in this chapter.
They are only used in thin stream settings.

The removal of the Exponential Backoff mechanism should eliminate
the undesirable high maximum values, which could be unfortunate for the
quality perceived by users. However, a retransmission timeout is an ex-
pensive packet loss detection mechanism, as slow-start is entered. Thus, 2
modified Fast Retransmit mechanisms were presented. The Vegas mechan-
ism was found to be too time-consuming to implement, compared to what

56

it had to offer. A simpler modification was proposed instead, the reduction
of the frexmt_thresh to 1 for thin streams, and thus retransmitting for the
first dupACK received, as their existence was found to be limited in thin
stream settings.

Additionally, mechanisms to reduce the need for retransmissions of
succeeding segments were proposed. The first idea, filling every transmit-
ted packet, was not implemented in this thesis, due to the limited time at
hand. However, a mechanism filling every retransmitted packet (piggy-
backing) was implemented.

As several enhancements have been proposed, we move on to imple-
ment and test these, to see if they indeed improve the performance.

57

Chapter 5

Implementation and testing of
the proposed enhancements

The TCP protocol files are mainly located in the /usr/src/linux/net/ipv4/

directory. Additional tcp.h-files are located in /usr/src/linux/include/net/

and /usr/src/linux/include/linux/, respectively.
The implementation of the TCP protocol is extensive and a lot of files

are involved. However, we are only concerned with the parts involved in
retransmission scenarios, thus we only need to look into the files involved
in this particular process.

The tcp_input.c file is as the name implies involved in the processing of
input from the network. Whenever data is received from the network, some
part of this file eventually gets involved in the process of deciding what this
packet contains and what should be done with it. The modified methods in
this file are tcp_time_to_recover() and tcp_fastretrans_alert(). These methods
are not related to alternate congestion control schemes, and thus cannot be
overridden by the different TCP variations.

The tcp_output.c file is similarly concerned with output related issues.
Whenever some data needs to be sent, some part of this file is involved in
the sending. Methods which have been modified here are
tcp_retrans_try_collapse() and tcp_retransmit_skb().

The tcp_timer.c file is as the name implies involved in timer related is-
sues. Only one method is modified here, the tcp_retransmit_timer() method.

As the implemented enhancements are mainly concerned with retrans-
missions, it is worth to describe briefly how TCP keeps track of it’s outgo-
ing packets in Linux, as we are going to retransmit some of these.

Since TCP needs to handle unreliable data delivery, it is necessary to
hold onto the sent data frames until acknowledgments for this data are
received [4]. This is necessary in case that an RTO occurs, or some other
indication arrives claiming that some data packet was lost, which requires
a retransmission.

58

Figure 5.1: TCP output queue

Together with a couple of other complicating matters, this results in
the TCP output engine being non-trivial. Figure 5.1 shows the TCP out-
put queue in Linux. The TCP socket maintains a doubly linked list of all
pending output data packets, kept in socket buffers (skb). sk_write_queue
points to the head of the list. sk_send_head keeps track of where in the queue
the next packet to be sent is located. If sk_send_head is NULL it means that
all packets on the
sk_write_queue have been sent once already. When ACK packets arrive
from the receiver and more send window space becomes available, the
sk_write_queue is traversed from sk_send_head and as many frames as al-
lowed are sent.

Linux calculates the RTO differently from [13]. The complicated calcu-
lations are done in the computations of the Smoothed Round-Trip Time

(SRTT) and Round-Trip Time Variation (RTTVAR) variables, and the RTO
is then set as (1/8 ∗ SRTT) + RTTVAR. RTTVAR is set to minimum
TCP_RTO_MIN, which is 200 ms (Hz/5). The RTO never gets below
TCP_RTO_MIN + RTT.

5.1 Removal of the exponential backoff mechanism

The Exponential Backoff mechanism is located at the bottom of the
tcp_retransmit_timer method in the tcp_timer.c file, at a label marked
out_reset_timer. The RTO (icsk->icsk_rto) is doubled with the code line:

icsk->icsk_rto = min(icsk->icsk_rto << 1, TCP_RTO_MAX);

If the new value exceeds the maximum RTO value TCP_RTO_MAX, the
RTO is set to TCP_RTO_MAX instead, but this value is 120 s in the Linux
2.6.15 kernel, and should thus seldom be used.

59

1 if(tcp_packets_in_flight(tp) > 4)
icsk->icsk_rto = min(icsk->icsk_rto << 1, TCP_RTO_MAX);

Figure 5.2: Thin stream No Exponential Backoff Modification

1 /* Not-A-Trick#2 : Classic rule... */
if(tcp_fackets_out(tp) > tp->reordering)

return 1;

Figure 5.3: Number of dupACKs test

The RTO timer is then reset with the line

inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, icsk->icsk_rto,
TCP_RTO_MAX);

passing the new RTO value as a parameter to the method.
As the exponential backoff is done in 1 codeline, the removal of this

mechanism is quite easy, and is just implemented as an if-test (shown in
Figure 5.2).

Thus, the value is only doubled if the stream currently has more than
4 packets in flight. Otherwise, it is defined as thin (as specified in the thin
stream definition earlier), and the RTO value remains the same (but is still
reset, of course). Using this modification should help us avoid the high
maximum RTD values, experienced in the thin stream tests (run in the ori-
ginal kernel).

However, there is one exception. The RTO value is initially set to 3 s,
as mentioned earlier (see Section 3.2.2). If packet loss occurs before any
RTO estimates can be made (requires RTT samples), the first RTD will be
approximately 3 s. The connections unlucky enough to experience this will
be off to a bad start.

5.2 Modified Fast Retransmit for thin stream use only

The check for the number of dupACKs is located in the tcp_time_to_recover()
method in the tcp_input.c file. This method returns 1 if it finds the time
ready to recover for a number of different reasons (implemented as if-tests).
The test that checks for dupACKs is shown in Figure 5.3.

The Linux 2.6.15 kernel incorporates the Eifel response [38] and detec-
tion [15] algorithms to detect and avoid spurious retransmissions due to
the reordering of packets by the network. The tp->reordering variable is
used in this process. It holds the value of the number of packets allowed
to be assumed reordered by the network before the packet is considered
lost. Thus, the number of dupACKs the sender can receive before it must

60

1 if(tcp_fackets_out(tp) > 1 && tcp_packets_in_flight(tp) <= 4)
return 1;

Figure 5.4: Thin stream 1 dupACK test

1 /* C. Process data loss notification, provided it is valid. */
if ((flag&FLAG_DATA_LOST) &&

before(tp->snd_una, tp->high_seq) &&
icsk->icsk_ca_state != TCP_CA_Open &&

5 tp->fackets_out > tp->reordering) {
tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering,

tp->high_seq);
NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);

}

Figure 5.5: Additional dupACK test in tcp_fastretrans_alert()

consider the packet to be lost, and initiate a retransmission. It is by default
set to frexmt_thresh (thus 3), but can be adjusted when spurious retrans-
missions are detected. The tcp_fackets_out() method returns the number of
dupACKs plus 1.

To incorporate the 1 dupACK invocation of the Fast Retransmit mech-
anism for thin streams, the additional test shown in Figure 5.4 is added at
the bottom of the method.

Thus, it is time to recover if at least 1 dupACK has been received for
this segment, provided that the number of packets in flight is at most 4.

Additionally, there is a test in the tcp_fastretrans_alert() method which
checks the number of dupACKs, shown in Figure 5.5.

This test is seldom used, but it is still extended with the same thin
stream test as the one in the tcp_time_to_recover() method, resulting in the
following modification shown in Figure 5.6.

1 if ((flag&FLAG_DATA_LOST) &&
before(tp->snd_una, tp->high_seq) &&
icsk->icsk_ca_state != TCP_CA_Open &&
(tp->fackets_out > tp->reordering ||

5 (tp->fackets_out > 1 && tcp_packets_in_flight(tp) <= 4))) {
tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering,

tp->high_seq);
NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);

}

Figure 5.6: Modified additional dupACK test in tcp_fastretrans_alert()

61

1 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
(skb->len < (cur_mss >> 1)) &&
(skb->next != sk->sk_send_head) &&
(skb->next != (struct sk_buff *)&sk->sk_write_queue) &&

5 (skb_shinfo(skb)->nr_frags == 0 &&
skb_shinfo(skb->next)->nr_frags == 0) &&

(tcp_skb_pcount(skb) == 1
&& tcp_skb_pcount(skb->next) == 1) &&

(sysctl_tcp_retrans_collapse != 0))
10 tcp_retrans_try_collapse(sk, skb, cur_mss);

Figure 5.7: Check if it is worthwhile and possible to collapse

5.3 Piggybacking in retransmitted packets (Fill every

retransmitted packet)

The filling of retransmitted packets requires a more extensive implement-
ation modification than the two previous enhancements. Additional unac-
knowledged data needs to be added to retransmitted packets, thus some
tampering with the data to be sent is required. It is possible that this can
be done in a number of different ways, depending on how one chooses to
implement the appending of additional data, and where in the code this is
done.

When going through the TCP code, I became aware of a method in the
tcp_output.c file named tcp_retrans_try_collapse(). This method attempts
to collapse two adjacent skbs during retransmission. That is, it tries to fit
the data of the next skb into the current one, and then frees the next skb.
Actually it is implemented as a proc variable, tcp_retrans_collapse, making
it possible to turn it on and off. It is called from the tcp_retransmit_skb()
method in the same file, provided it is worthwhile and possible. This is
checked through an extensive if-test, which among other things checks if
the proc variable is set (shown in Figure 5.7).

First it checks that the skb does not contain a SYN packet, next it re-
quires that the data length is less than half of the current MSS. Then it is
checked whether the next skb is the first unsent packet (sk->sk_send_head)
or whether it is the head of the queue (sk->sk_write_queue). Additionally,
it is checked whether any of the skbs contain fragments or more than 1
packet. Finally, it checks that tcp_retrans_collapse is enabled.

The tcp_retransmit_skb() method is called to retransmit 1 skb, which typ-
ically contains 1 packet. However, if tcp_retrans_try_collapse() is invoked,
the skb can now contain 2 original packets. It is however not guaran-
teed that the collapse has taken place, even if the if-test is passed and
tcp_retrans_try_collapse() invoked. The method performs some additional
tests to make sure that it is worth collapsing. E.g. there must be enough

62

room left in the current skb to contain the next skb’s data, and there is no
need to collapse if the next skb is SACKed. However, provided that the
collapse is carried out, the retransmission will consist of 2 packets, thus the
packet is at least partially filled.

The approach taken here is to extend this mechanism so it will be able
to collapse several packets, provided this is worthwhile and there is room
in the packet. That is, just continue collapsing the next skb with the current
one as long as it is possible and worth it, instead of just doing it once.

The tcp_retrans_try_collapse() method is doing the work of collapsing
two skbs for us, we just have to decide how long it is worth collapsing.
Thus, what we want to do is to perform the if-test with the subsequent call
to tcp_retrans_try_collapse() as long as it is possible and profitable.

Performing the same task several times until some condition is not met
usually means involving a while-loop. I have however earlier experienced
that an implemented while-loop in the kernel resulted in the machine freez-
ing. Even though this might not be the result here, I have chosen not to use
a while-loop to avoid similar problems. However, this can easily be modi-
fied if this is found to be beneficial.

As this modification should only be performed in thin stream settings,
the previously used thin stream test, checking the number of packets in
flight, is applied here as well. Thus, if the stream is considered to be thick
the usual approach is taken (Figure 5.7). Otherwise the approach shown in
Figure 5.8 is taken.

The thing we wish to do is barely different from the usual approach.
We still want to collapse 2 packets, the only difference is we want to do this
several times and slacken the conditions for collapsing. Thus, we drop the
requirements demanding that the data currently residing in the skb must
be less than half of the current MSS, and that only 1 packet can be held
in each skb. Additionally, the modification is not implemented as a proc
variable, thus the condition for the proc variable being set is dropped.

The sk_stream_for_retrans_queue_from() for-definition is used for travers-
ing the queue from a given skb, passed as a parameter to the definition.
However, what we want to do is to remain at this element, and collapse the
succeeding element with this one as long as this is possible and there are
more elements in the queue. Thus, a little trick is used to provide this. We
remember the first skb (first). When we have gone through one pass in the
loop, the current skb will be the second element in the queue from where
we started. Thus, the previous element is the one we actually want, and we
therefore reset the current skb to this element.

Additionally, it is necessary to check that we have actually collapsed
something (otherwise we will be stuck in an infinite loop). If we have
passed the test and tcp_retrans_try_collapse() merged the next skb with the
current one, the next skb (skb->next) should be different. Thus, when the
test has been executed (possibly tcp_retrans_try_collapse() as well), we check

63

1 else{
first = skb;
sk_stream_for_retrans_queue_from(skb, sk) {

if(skb->prev == first){
5 skb = first;

}
changed = skb->next;
if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&

(skb->next != sk->sk_send_head) &&
10 (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&

(skb_shinfo(skb)->nr_frags == 0
&& skb_shinfo(skb->next)->nr_frags == 0)){

tcp_retrans_try_collapse(sk, skb, cur_mss);
}

15 if(changed == skb->next || skb->next == sk->sk_send_head ||
skb->next == (struct sk_buff *)&sk->sk_write_queue){
break;

}
}

20 skb = first;
}

Figure 5.8: Thin stream collapse modification

1 if(tcp_packets_in_flight(tp) > 4){
BUG_ON(tcp_skb_pcount(skb) != 1 ||

tcp_skb_pcount(next_skb) != 1);
}

Figure 5.9: Conditional 1 packet bug test

if this is true. If it is the same, we break the for-loop as nothing more can be
collapsed. Additionally, we check if the next skb is the first unsent packet
or the head of the queue, as either of these mean that we are finished as
well.

Since the modification is only used in a thin stream setting, the queue
can at most contain 4 elements as each element represents at least 1 packet
in flight. Additionally, the tcp_retrans_try_collapse() method is slightly chan-
ged as it contains a bug test checking if both skbs contains 1 packet. The
thin stream test is just added here as well (shown in Figure 5.9).

5.4 Testing and evaluation of the implemented enhance-

ments

As the modifications and their implementation have been described, we
move on to see how they perform in practice, and if they provide the de-

64

sired enhancements when it comes to the RTD. However, as the earlier tests
revealed a more or less identical behaviour for the TCP variations in thin
stream settings, there is no need to test the modifications with all of these,
as the modifications are made for thin stream use only. Thus, only some
variations and SACK options are used in these tests. As New Reno is the
default protocol it is naturally included in the tests. Based on the thick
stream tests, Hybla was picked from the alternative variations, as it gave
the best impression. Additionally, these 2 were tested with the SACK and
FACK option, as these improved the RTD in the former tests.

5.4.1 Test layout

The tests run earlier were trying to simulate real traffic, and real stream
traffic behaviour, but they might not have been able to capture all aspects
of the nature of real traffic. However, it would be nice to see how the imple-
mented modifications perform for real traffic as well, and especially game
traffic. My supervisors were kind enough to provide an hour of real traffic
from an Anarchy Online game server. Using one of their programs, the
traffic flow is regenerated, providing about an hour of real game traffic.

To test the modifications with the Anarchy Online traffic, the original
kernel must be tested with this traffic. Additionally, as we need dupACKs
to test the Fast Retransmit modification, the number of packets in flight
must be heightened. Thus, some tests with the original kernel must be
run for comparison, resulting in some additional testing with the original
kernel.

Thus, tests are run for 2 different kernels, the original and the modi-
fied. However, as the earlier tests showed (and was later discussed), the
number of dupACKs are limited in thin streams, and even when we are
utilizing them, their impact will be constrained. The Piggybacking modi-
fication might have a limited impact as well, as it requires additional out-
standing data and enough room in the retransmitted packet. Additionally,
if the piggybacked segment is not lost, this does not have any effect. Thus,
the most influential enhancement should be the removal of the Exponential
Backoff mechanism. To get a certain view of the effect of this modification
compared to the others, the tests are run in a kernel with only this modific-
ation implemented as well.

As the Piggybacking modification is based on a mechanism already in-
corporated in the kernel as a proc variable, it would be interesting to see
the difference in performance with and without this proc variable turned
on. And additionally, to see the difference between the original and the
modified mechanism. Thus, when testing the Anarchy Online traffic, the
traffic is run in the original kernel both with and without the proc variable
set. This is not done for the other test types as the piggybacking mechan-
ism is not invoked there, due to the nature of these tests (explained under

65

the specific test type).
The Anarchy Online game server has a high number of connections dur-

ing the provided period, 175 totally, varying in duration and in the amount
of transmitted data. For the individual flows the transmission of data is not
performed in specific time intervals, it is quite dynamic both in the interval
between the sending of packets and in the number of packets transmitted
within a given interval. Thus, the number of packets in flight might vary
considerably for these flows, possibly even occasionally exceed the thin
stream limit, temporarily disabling the thin stream modifications (if we are
running a modified kernel). Thus, exponential backoff can potentially oc-
cur, if multiple retransmissions are needed during this period.

It is not worth evaluating the individual connections as they vary in the
amount of data they are transmitting, and thus in the number of retrans-
mitted packets. Several of the connections will typically only retransmit a
few packets (possibly even none), which is not nearly enough to be able to
draw any conclusions. Due to this nature of the traffic flow, the connections
will be evaluated as one. That is, we summarize the connections, and look
at the statistics for the entire hour. Thus, the RTD and packet statistics will
be the average for all the connections. For the average and standard de-
viation calculations, the values are weighted corresponding to the number
of retransmitted packets, meaning that the average for a connection with
a couple of hundred retransmissions will have a bigger influence than a
connection which only retransmits a few packets. Thus, even if the "abnor-
malities" experienced in the earlier tests occur occasionally, this should not
have any considerable impact on the result, as they should only be a drop
in the sea.

Additionally, some extra statistics regarding dupACKs are included, as
they are thought to be relevant for the evaluation. It would be interesting
to see how many dupACKs are created in the Anarchy Online scenario,
thus we additionally include statistics for the average number of dupACKS
per connection, and the number of connections without dupACKs. It is
important to keep in mind that the number of dupACKs does not reflect the
exact number of possible Fast Retransmit invocations, as some dupACKs
are ignored. An example, if a Fast Retransmit has just been triggered and
a retransmission is under way, incoming dupACKs still indicating the loss
of the retransmitted packet are ignored.

Additionally, we want to test the improvement of the Fast Retransmit
modification, thus we need to create a thin stream environment which still
contains a certain generation of dupACKs. This is done by using netperf
with the same parameters as before, but changing the message size to 1448
B, which is the SMSS used in this network. Thus, as 4 messages are still
sent in one burst, but the message size is changed to SMSS, this results in
the transmission of 4 packets, which should provide a certain opportunity
for receiving dupACKs (but by the thin stream definition, the stream is still

66

considered to be thin).
For the original kernel, the 2 tests just described are run. For the mod-

ified kernel and the kernel with the No Exponential Backoff mechanism
only, the original tests are run in addition. As no differences could be seen
in the thin stream settings, the tests are just run for one scenario, with a
delay of 100 ms (gives RTT 200 ms) and a 5% loss rate.

Tracepump

This program is provided by the supervisors and regenerates the Anarchy
Online traffic, making it possible to test this traffic with alternate RTT and
loss scenarios, and see how this affect the traffic. This can then be mon-
itored by using tcpdump, and subsequently tcptrace can be used to extract
the relevant statistics. The program needs to be started at both sender and
receiver.

The program is started at the receiver with the command:

./tracepump --recv

The only thing the receiver does, is to listen for TCP connections on a num-
ber of ports. If something connects, it reads data from the established con-
nection and discards it.

The usage for the sender side is:

./tracepump --send [Options] <recvaddr> <file>

The sender reads a pcap file <file> and tries to recreate the packet streams
as it is encountered in the file in real-time. To do that, it connects to a
given IP address <recvaddr>, starting at a given port (default is 12000).
For every further connection encountered in the trace file, it connects to
the same IP address but increases the port number by one. Connection
establishment for all ports is performed before the sending starts. Only
TCP connections from the trace are considered, and only first time sending
of packets is recreated, retransmissions are ignored.

Tcpdump (Section 3.1.2) is then used to listen and gather information
about the traffic.

5.4.2 Test of the selected TCP variations with the earlier test con-
figuration

The original kernel

Table 5.1 shows the earlier test results for the TCP variations and SACK op-
tions used in the tests performed here. These have been discussed earlier,
so we will not go into details here. Shortly summarized, no differences

67

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs Min Max Avg Stddev

RENO P 3929 414 1 412.1 1680.1 467.5 162.6

RENO S 3914 392 0 412.1 1680.1 466.4 178.4

RENO S F 3918 402 1 412.1 3328.2 468.0 217.2

HYBLA P 3912 403 0 412.1 1680.1 476.3 185.7

HYBLA S 3930 396 0 412.1 1680.1 454.6 141.6

HYBLA S F 3882 361 0 412.1 1680.1 469.4 184.4

Combined RTD Statistics 412.1 1954.8 467.0 178.3

Table 5.1: Netperf Statistics, Message Size 100 B, Original Kernel

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs Min Max Avg Stddev

RENO P 3925 402 1 412.1 451.5 417.0 3.4

RENO S 3925 391 0 412.1 597.5 417.4 9.6

RENO S F 3923 381 0 412.1 464.0 417.3 3.9

HYBLA P 3921 380 0 412.1 444.0 416.9 3.3

HYBLA S 3896 352 0 412.1 930.9 418.9 27.5

HYBLA S F 3958 416 0 412.1 420.0 417.1 2.9

Combined RTD Statistics 412.1 551.3 417.4 8.4

Table 5.2: Netperf Statistics, Message Size 100 B, Modified Kernel

between the protocols, practically no dupACKs, thus RTO is the only de-
tector of packet loss, and it’s Exponential Backoff mechanism causes high
maximum values for the RTD.

The modified kernel

As we know from the earlier tests, running the original test configuration
provides practically no dupACKs, and this can be seen in the test results
(Table 5.2). Additionally, as the second packet in a burst is not sent until
the first has been acknowledged (see Section 3.2.2), there will usually not
be anything for the Piggybacking modification to collapse. Thus, the No
Exponential Backoff mechanism should more or less be the only modifica-
tion invoked in these tests. However, this mechanism performs smoothly,
resulting in an extreme declination of the maximum RTDs. The average
of the maximum RTDs has dropped from 1954.8 ms to 551.3 ms, and 4 of
the runs have maximum RTDs below or within a close proximity of the
averages for the original kernel.

The averages for the modified kernel remain close to the minimum val-
ues (which is the best we can get with only No Expontial Backoff), and the
standard deviation is very low as well, below 5 ms for 4 of the 6 runs. The

68

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs Min Max Avg Stddev

RENO P 3914 361 0 412.1 420.0 417.0 3.0

RENO S 3907 355 0 412.1 664.0 418.0 15.1

RENO S F 3922 378 0 412.1 616.6 417.8 10.7

HYBLA P 3896 337 0 412.1 528.2 417.1 6.9

HYBLA S 3916 406 4 412.1 7720.3 459.9 453.8

HYBLA S F 3948 404 0 412.1 420.3 416.9 3.0

Combined RTD Statistics 412.1 1728.2 424.5 82.1

(excluding the Hybla S run) 412.1 529.8 417.4 7.7

Table 5.3: Netperf Statistics, Message Size 100 B, Kernel with only No Ex-
ponential Backoff

averages show a decrease of 40-60 ms from the runs with the original ker-
nel. Thus, considering the stream nature in these tests (with no dupACKs),
the results are satisfactory, as we keep the average close to the minimum.

Kernel with only the No Exponential Backoff modification implemented

The test results (Table 5.3) for this kernel are practically identical with the
results from the previous section. The only exception is the Hybla run with
the SACK options, which is unfortunate enough to get an abnormally high
maximum value, but this is by pure chance and has nothing to do with
the Hybla or SACK protocol. These results are however quite expected, as
the No Exponential Backoff mechanism was the only modification invoked
in the former tests (explained in the previous section). Thus, whether the
additional enhancements are implemented or not does not make any dif-
ference (for this test configuration), and the test runs in both kernels will
experience the same protocol behaviour. Removing the Hybla S run from
the RTD statistics results in almost identical values for the 2 modified ker-
nels.

5.4.3 Anarchy Online testing

The original kernel

The test results for the Anarchy Online traffic (Table 5.4) are quite interest-
ing here, as a more dynamic behaviour might result in all of the modific-
ations contributing to an improved performance. The differences between
the TCP variations are limited, but as the thin stream nature is quite dif-
ferent for this traffic compared with the former tests (Section 5.4.2), a short
comparison between the 2 will be presented.

69

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs No Min Max Avg Stddev

dupACKs

RENO P 2209.7 207.1 25.5 37 413.7 1954.0 470.1 216.5

RENO S 2232.6 199.9 55.2 9 396.4 1622.4 463.1 175.2

RENO S F 2221.3 201.5 54.9 18 401.5 1617.6 465.0 177.6

HYBLA P 2266.0 201.7 67.6 7 392.0 1585.5 461.5 176.1

HYBLA S 2232.4 196.2 74.5 7 396.9 1695.6 462.9 175.0

HYBLA S F 2257.4 197.7 75.1 8 412.3 1818.7 463.6 173.7

Combined RTD Statistics 402.1 1715.6 464.4 182.4

Table 5.4: Anarchy Online Statistics, Original Kernel

The average RTDs roughly correspond to the values gotten in the earlier
tests. There are however several other interesting differences between the
tests. The most welcome one might be the higher number of dupACKs
present in the Anarchy tests. Especially Hybla and the enabling of the
SACK options provide a considerably increased number, making things
more promising for the Fast Retransmit modification. However, their pres-
ence are still quite limited, as several connections contain no dupACKs,
and thus their effect might be limited as well.

As the packet transmission frequency is different and more dynamic,
the minimum and maximum values are a little different. The maximum
RTDs are still high, while the minimum RTDs reflect the fact that at least
some retransmissions are not triggered by the RTO, but as the minimum
values still remain close to the minimum RTO value (which should be ap-
proximately 400 ms, 200 ms + RTT), this indicates that these retransmis-
sions are rare.

The original kernel without tcp_retrans_collapse enabled

The interesting part for these results (Table 5.5) are the slight increase in
the number of retransmitted packets, even though the number of trans-
mitted packets has decreased, indicating that the collapse mechanism in-
deed has a certain effect. However, the differences are not great. The com-
bined number of packets transmitted has decreased from 2236.6 to 2222.3,
while the combined number of retransmissions has increased from 200.7
to 206.2. This gives a retransmission rate of 0.0897 for the original kernel
with tcp_retrans_collapse enabled, while the rate without it is 0.0928. The
combined average RTD is slightly affected as well, increasing from 464.4 to
467.5 when the proc variable is disabled.

Some interesting side effects is the considerable decrease in the min-
imum RTD values, as well as the increase in the number of connections
without dupACKs for the Reno protocol, resulting in a lower number of

70

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs No Min Max Avg Stddev

dupACKs

RENO P 2201.0 209.1 25.5 27 372.6 1637.0 467.0 197.0

RENO S 2231.2 211.8 31.2 31 361.5 1792.5 468.9 194.7

RENO S F 2193.7 207.7 30.6 29 393.5 1895.5 471.1 203.5

HYBLA P 2226.5 202.2 65.1 16 334.9 1645.6 468.1 200.9

HYBLA S 2246.8 203.6 72.3 9 331.7 1625.6 463.1 177.9

HYBLA S F 2234.5 202.8 72.5 7 350.9 1938.9 466.5 188.5

Combined RTD Statistics 357.5 1755.9 467.5 193.8

Table 5.5: Anarchy Online Statistics, Original Kernel without
tcp_retrans_collapse

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs No Min Max Avg Stddev

dupACKs

RENO P 2232.4 210.7 24.5 27 365.8 739.2 418.4 25.9

RENO S 2235.0 202.2 51.8 16 324.2 794.1 419.3 36.4

RENO S F 2236.4 203.3 52.1 10 342.5 703.2 418.4 36.9

HYBLA P 2256.4 202.6 64.3 8 318.2 914.5 419.8 44.6

HYBLA S 2247.1 199.1 71.2 9 316.4 624.3 417.8 32.6

HYBLA S F 2244.0 196.6 70.4 8 324.3 860.8 421.5 44.8

Combined RTD Statistics 331.9 772.7 419.2 36.9

Table 5.6: Anarchy Online Statistics, Modified Kernel

dupACKs per connection.

The modified kernel

The results (Table 5.6) show considerable improvements in the RTD statist-
ics for the modified kernel. The comparison will here be against the ori-
ginal kernel with tcp_retrans_collapse enabled, as this produced the best
results. The RTD averages have a decrease of 40-50 ms. The maximum
RTDs show a dramatic drop in their values, reducing their combined av-
erage from 1715.6 to 772.7 ms. This drop affect the standard deviations,
which experience heavy reductions as well, going from values in the region
175-215 ms to 25-45 ms. An interesting fact is the considerable drop in the
minimum RTD values, now well below the minimum RTO value, and thus
indicating a certain effect of the Fast Retransmit modification. The com-
bined average of the minimum RTDs has decreased from 402.1 to 331.9 ms,
an improvement of approximately 70 ms.

In these tests, packets are often collapsed during retransmissions, thus

71

Connection (192.168.1.2:53746-192.168.2.2:12000)
Retransmission region for packet 3053
3048 PKT t 748.453 seq 146762 len 35
3049 ACK t 748.66 ack 146797
3050 PKT t 748.773 seq 146797 len 73
3051 PKT t 749.045 seq 146870 len 294
3052 PKT t 749.173 seq 147164 len 282
3053 RTR PKT t 749.189 seq 146797 len 649
3054 ACK t 749.252 ack 147164
3055 ACK t 749.396 ack 147446
Retransmission count: 1
Time between first trans and last retrans: 415.895 ms

Figure 5.10: The modified collapse mechanism in action, extracted with
loss_details

potentially reducing the need for retransmissions of succeeding packets,
but it is only a couple of times there are more than 2 packets to collapse.
Thus, the modified part of the collapse mechanism is only invoked a couple
of times (see Figure 5.10), and it’s effect compared to the original mechan-
ism is thus minimal. To be precise, the modified mechanism itself is always
invoked, but unless there are more than 2 packets to collapse, it’s behaviour
is not any different from the original mechanism. But the collapse mechan-
ism itself is frequently invoked, which should be beneficial. However, as
the original kernel has access to the original collapse mechanism as well,
the modified kernel will only have an advantage when the modified part is
used. As this rarely happens here, the difference between the kernels when
it comes to this mechanism will be minimal.

If we compare the results here with those in Table 5.2, the latter’s are
marginally better, but we are only talking about a difference of a few ms.
Some differences are not totally unexpected as the stream behaviour is
quite different. As the time intervals between transmissions and the amount
of data and packets transmitted are different, the results for the tests are not
fully comparable. The most important fact is that both present considerable
improvements in almost all aspects of the RTD statistics.

Kernel with only the No Exponential Backoff modification implemented

The results for this kernel (Table 5.7) are quite similar to the ones gotten in
the former section, but some minor differences exist. The tendency is that
the different RTD statistics are generally slightly higher in this kernel than
in the completely modified version. The combined averages of the RTD
statistics all give values a little higher than in the totally modified kernel
(see Table 5.8).

However, the major improvement that can be seen, when comparing
the results with the original kernel, must be subscribed to the implementa-
tion of the No Exponential Backoff mechanism, as the kernel with just this

72

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs No Min Max Avg Stddev

dupACKs

RENO P 2208.1 207.3 25.6 36 448.5 761.7 420.2 29.9

RENO S 2249.1 203.1 54.7 14 397.9 902.7 423.1 49.5

RENO S F 2263.1 206.4 54.4 11 402.3 824.1 421.7 38.3

HYBLA P 2229.8 198.8 64.6 10 388.2 851.3 422.2 42.2

HYBLA S 2261.5 201.9 74.3 12 403.9 897.9 422.9 39.3

HYBLA S F 2246.8 198.6 73.3 10 394.1 804.1 422.4 36.2

Combined RTD Statistics 405.8 840.3 422.1 39.2

Table 5.7: Anarchy Online Statistics, Kernel with only No Exponential
Backoff

Kernel Combined RTD Statistics

Min Max Avg Stddev

Original Kernel 402.1 1715.6 464.4 182.4

Modified Kernel 331.9 772.7 419.2 36.9

Kernel with No Exponential Backoff only 405.8 840.3 422.1 39.2

Table 5.8: Comparison of the different kernels

modification implemented, perform almost as well as the totally modified
kernel. Thus, it is the most influential of the implemented modifications,
but the others contribute as well. The Fast Retransmit contribution can
be seen through the reduced minimum values, while for the Piggybacking
modification, the modified part is seldom invoked, thus this will have a
minimal effect. However, the collapse mechanism used in this modification
is quite beneficial, and the modification has made it a general mechanism
in thin streams, instead of a proc variable. Thus, the mechanism itself is
quite useful.

5.4.4 Thin stream testing with dupACKs

As described in the previous section, the influence of the Fast Retransmit
mechanism was limited due to the sparse generation of dupACKs, neces-
sary for it’s invocation. It seemed to have a certain effect, but we were not
really able to test how well this enhancement could perform. Thus, we per-
form some additional testing with a different configuration to see how the
modification performs when it is given better conditions.

73

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs Min Max Avg Stddev

RENO P 10430 687 594 412.4 2381.1 557.2 237.4

RENO S 7843 540 473 331.2 2511.3 607.8 272.9

RENO S F 7406 468 407 413.6 1598.1 579.2 189.2

HYBLA P 7740 536 516 204.7 4416.2 618.5 380.8

HYBLA S 7713 510 484 204.7 2384.1 618.2 290.8

HYBLA S F 7725 521 504 204.8 4160.3 612.1 291.5

Combined RTD Statistics 295.2 2908.5 598.8 277.1

Table 5.9: Netperf Statistics, Message Size 1448 B, Original Kernel

The original kernel

For some reason, running the new test configuration in the original ker-
nel caused the runs with Reno protocol considerable problems. Hybla’s
runs finished without any trouble, but the Reno runs stopped short, finish-
ing well before the time requested for the run. The best attempt stopped
about 14 minutes into the 30 min run. This is not optimal for the compar-
ison between the different kernels, but the values gotten for the Reno runs
roughly corresponds to the values gotten for the Hybla variation. Thus, I
make the assumption that the values are representable for the Reno pro-
tocol, and adopt the same approach as was done in the Anarchy Online
tests, running the tests several times and thus getting values for several
connections and then calculate their combined average. Although this is
unfortunate, it should not have that much of an influence as the Hybla res-
ults provide a certain impression of the performance in this kernel, and
none of the previous (extensive) thin stream tests have shown any signific-
ant differences between the TCP protocol variations. Additionally, combin-
ing the average of several connections should still provide a quite repres-
entable impression of the Reno variation.

Apart from the problem just described, the increase in the amount of
data requested to be sent results in a considerable jump in the RTD aver-
ages, compared with the results in Section 5.4.2. The average RTD has gone
from somewhere in the region of 450-475 ms to values above 600 ms (see
Table 5.9). The maximum RTDs have increased as well, while the only be-
nefit seems to come from the lower minimum values, which should be due
to the invocation of Fast Retransmit. The most promising aspect in these
tests is that there are now plenty of dupACKs being created.

The modified kernel

The results (Table 5.10) show huge improvement in the RTD statistics com-
pared to the results for the original kernel. The average RTDs are not that

74

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs Min Max Avg Stddev

RENO P 7703 499 341 204.4 1727.9 442.5 186.5

RENO S 7687 483 357 204.4 1187.9 428.6 183.1

RENO S F 7728 526 373 204.4 1319.9 450.0 198.8

HYBLA P 7708 504 401 202.8 1688.0 413.4 194.0

HYBLA S 7739 535 397 204.5 2065.7 446.2 228.7

HYBLA S F 7745 542 406 202.3 1671.3 444.6 219.6

Combined RTD Statistics 203.8 1610.1 437.6 201.8

Table 5.10: Netperf Statistics, Message Size 1448 B, Modified Kernel

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs Min Max Avg Stddev

RENO P 7707 503 443 207.6 1464.1 575.1 153.2

RENO S 7677 473 425 205.9 2999.4 505.3 164.2

RENO S F 7707 503 469 208.6 1208.1 507.8 129.9

HYBLA P 7745 541 481 204.9 2649.8 528.0 192.8

HYBLA S 7709 505 486 204.7 1344.5 546.1 189.8

HYBLA S F 7701 497 485 203.4 1536.0 564.0 200.8

Combined RTD Statistics 205.9 1867.0 537.7 171.8

Table 5.11: Netperf Statistics, Message Size 1448 B, Kernel with only No
Exponential Backoff

far from the value level for the other tests run in the modified kernel, and
show an improvement of 150-200 ms. Actually, the lowest average RTD,
regardless of the test type, can be found in these results (413.4 ms). The
maximum RTD show dramatic reductions as well, and the minimum val-
ues are still as low as they should be (close to the RTT).

The modification of the Fast Retransmit mechanism does not lead to a
higher retransmission rate for these tests. The retransmission frequency for
the original and the modified kernel is practically identical, with a rate of
0.0668 and 0.0667, respectively.

As the messages requested to be transmitted equal the SMSS, the Piggy-
backing modification cannot be invoked here, as there will never be any
room in the packet for it to fill. However, it is uncertain how much of the
improvement are due to the Fast Retransmit modification, and how much
should be subscribed to No Exponential Backoff. To get a certain idea, we
run the same test configuration in the kernel with only the No Exponential
Backoff mechanism implemented.

75

Kernel with only the No Exponential Backoff modification implemented

The results for this kernel (Table 5.11) show considerable improvements
compared to the original kernel, but the average RTDs are nowhere near
the values gotten in the previous section. Thus, the Fast Retransmit modi-
fication should get a lot of credit for the improvements in this test config-
uration, while the No Exponential Backoff mechanism plays a smaller (but
still considerable) part. The maximum RTDs show a considerable reduc-
tion from the original kernel tests, but they are still a little higher than for
the completely modified kernel. The minimum RTD values still suggest a
certain influence by original Fast Retransmit (3 dupACKs).

5.4.5 Evaluation of the implemented enhancements

Now that we have tested that the implemented enhancements work, are
invoked, and seem to have an influence on the performance, it is time to
reflect on what kind of impression they conveyed.

The original tests showed that the performance was far from optimal in
thin stream settings with respect to the RTD. The preferred packet loss de-
tection mechanism, Fast Retransmit, was hardly invoked at all, and this left
the drastic RTO mechanism as the only detector of loss. The downfall of the
Fast Retransmit influence was due to the almost complete non-existence of
the dupACKs needed for it’s invocation. Additionally, a certain aspect of
the RTO mechanism did not help things. The Exponential Backoff mechan-
ism doubles the RTO for each retransmission of the same segment, causing
even higher RTD values. Even though it is not invoked very often, it’s in-
fluence on game impression can still be unfortunate. Thus, as the RTO was
practically the sole detector of loss, the RTD values gotten were quite high.

This impression was upheld for the additional testing performed here,
with general high values for the RTD statistics, clearly indicating that the
TCP protocol and it’s variations are not optimized for this kind of traffic.
Thus, leaving considerable room for improvements.

As the RTO mechanism seems to assume a considerably more import-
ant position in thin streams, it is essential to limit it’s unfortunate effects.
Thus, the Exponential Backoff mechanism was removed as this resulted
in some extremely high RTD values, most unfortunate in game scenarios.
This modification proved to be the most important enhancement for the
tests performed here. For the tests with the original configuration and the
Anarchy Online tests, this modification was the dominant factor for the im-
provement of the performance. Additionally, it had a significant influence
in the last test configuration as well.

Thus, this modification is a most welcome and efficient enhancement
for the thin stream performance. However, this modification only optim-
izes the performance of the least preferred loss detection mechanism. Even,

76

though it improves the RTD considerably, the RTD is still quite high. The
less penalizing and potentially faster packet loss detection mechanism, Fast
Retransmit, fails to become active in the thin stream settings, which is most
unfortunate. It is to demanding when it comes to the number of dupACKs
it requires before it’s invocation. DupACKs are considerably more of a lux-
ury in thin streams than they are in it’s usual thick stream scenario.

Thus, dupACKs should be utilized when they occasionally occur, and
Fast Retransmit was modified in an attempt to increase it’s invocation fre-
quency, reducing it’s frexmt_thresh from 3 to 1. This should allow the Fast
Retransmit mechanism to be triggered when the first dupACK is received,
instead of having to wait for 2 additional ones. As this modification is en-
tirely dependent on the generation of dupACKs, it’s influence was limited
in the tests where dupACKs were rare. However, when dupACKs were
steadily created it showed it’s potential, providing a huge improvement of
the RTD values, without increasing the retransmission frequency.

As the RTO and the Fast Retransmit mechanism are the incorporated
means to detect packet loss, and both have been modified here to provide
lower RTDs, little more can be done here. However, the only thing bet-
ter than having a low RTD is to avoid the retransmission altogether. Thus,
a piggybacking mechanism was incorporated as well in an attempt to re-
duce the number of retransmissions. The mechanism utilized an already in-
corporated mechanism (tcp_retrans_collapse), implemented as a proc vari-
able, which tried to collapse 2 packets during a retransmission, thus adding
an extra packet to the retransmitted one. This mechanism was extended to
add packets to the retransmitted one as long as there was room. The col-
lapse mechanism itself performed smoothly, but the extension, collapsing
3 or 4 packets, was seldom used. This was due to the lack of additional
outstanding data, as there rarely were more than 2 packets in flight. Thus,
the main benefit provided by this modification was the discovery of the
tcp_retrans_collapse mechanism itself, and additionally making this mech-
anism independent of the proc variable for thin streams. However, trans-
mitting several original packets in one retransmission is still a considerable
benefit.

Thus, the modifications all seem to improve certain aspects of the per-
formance. Now it is time to move on to evaluate the different kernel ver-
sions’ performance.

Figure 5.11 show the results for the different test types for each kernel.
The following abbreviations are used in the figure:

orig. conf. - The tests run with the original test configuration

anarchy - the Anarchy Online tests

dupACK - the thin stream tests with dupACK generation

The modified kernel can present the best results, and show a consider-

77

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

th
ic

k
st

re
am

du
pA

C
K

 te
st

an
ar

ch
y

te
st

or
ig

. c
on

f.

du
pA

C
K

 te
st

an
ar

ch
y

te
st

or
ig

. c
on

f.

du
pA

C
K

 te
st

an
ar

ch
y

te
st

or
ig

. c
on

f.

R
T

D
 (

in
 m

s)

Original Modified No Exponential
Backoff only

The kernel versions

Figure 5.11: The combined RTD statistics for each test type in each kernel

able improvement compared to the original kernel, while the last version
show the No Exponential Backoff mechanism’s impressive influence.

Thus, the enhancements has resulted in a desired improvement of the
performance, but how do their RTD values compare to the values gotten
in the corresponding thick stream scenario? Table 5.12 show the values for
the selected variations in the thick stream scenario, and the combined av-
erage RTD has been included in Figure 5.11. The results in this scenario are
closely related to the throughput rate, and additionally to the enabling of
SACK and FACK. The Hybla P run is not included in the following discus-
sion due to it’s abnormal behaviour.

The values for the modified kernel are not that far from the values got-
ten for the Reno protocol in the thick stream scenario. They get below
the value gotten for the plain Reno protocol, but the enabling of SACK
and FACK provide considerable improvement in the thick stream scen-
ario, while they fail to produce the same effect in the thin stream scenario.
Hybla’s advantage is presumably related to it’s superior throughput rate,
which should result in a faster generation of dupACKs, and thus a faster
and more frequent invocation of Fast Retransmit. As the most important
characteristic of thin streams is their limited throughput, they logically do
not possess the same opportunity.

Still, if we compare with the results gotten in the original kernel, the

78

TCP Variation Packet Statistics DupACK Statistics Retransmission Time Statistics (in ms)

Total Rexmt dupACKs Min Max Avg Stddev

RENO P 11235 616 208.0 2088.1 443.4 227.7

RENO S 12643 655 208.0 1880.1 395.1 164.8

RENO S F 13003 649 208.0 1680.1 375.1 160.8

HYBLA P 25933 1459 206.4 5052.0 678.5 500.4

HYBLA S 38962 1985 204.2 3036.2 360.2 189.6

HYBLA S F 42821 2188 204.4 1888.1 275.9 130.1

Combined RTD Statistics 206.5 2604.1 421.4 228.9

(excluding Hybla P) 206.5 2114.5 369.9 174.6

Table 5.12: The thick stream RTD statistics for the selected variations, delay
100 ms, loss 5%

modifications have approximately halved the distance to the thick stream
average, but they are still a long way from approaching the top thick stream
value (Hybla S F 275.9 ms), which is almost a 100 ms better than the thick
stream average. The difference is that in the thick stream scenario, dif-
ferences between the individual variations exist, and there is usually al-
ways some variation(s) that lives up to the expectation and performs better
than the others. In this scenario represented by Hybla with FACK. The thin
stream scenarios seems to lack this quality, and thus they might not be able
to compete with the thick stream top values.

However, when it comes to the maximum RTDs, the values gotten for
thin stream scenarios, in the modified kernels, are better than in the thick
stream scenario. This might be more important than the average RTD for
certain thin stream applications, e.g. game settings, as long as the aver-
age RTD is still fairly low. It is usually the high maximum values that are
detectable by the user.

5.5 Summary

In this chapter, we have described the implementation of the proposed en-
hancements, and then tested these enhancements for different test types to
see if they indeed provided any improvements in the performance.

The implementation of the proposed modifications was done without
any extensive tampering with the implemented TCP protocol. The removal
of exponential backoff and the modification of Fast Retransmit were incor-
porated through a couple of additional if-tests, or an extension of existing
ones. Neither the Piggybacking modification required any comprehensive
alteration.

The tests showed that the modifications indeed resulted in a consider-
ably improved performance, but some contributed more than others. The

79

No Exponential Backoff modification proved to be the most influential of
the modifications, almost solely responsible for the improvement in 2 of
the test scenarios, and additionally playing a considerable part in the last
scenario. The Fast Retransmit modification depended on the number of
dupACKs created, and thus had a limited influence in the test scenarios
where their presence was sparse. However, it provided a huge improve-
ment for the RTDs in the last scenario with a steady dupACK rate. The
Piggybacking modification had the least influence, but this was due to the
traffic flow nature in these tests. For 2 of the test scenarios, it was not in-
voked due to the test configuration, and even in the Anarchy Online scen-
ario, there were seldom more than 2 packets in flight. Thus, the collapse
mechanism itself was invoked fairly often, but there were seldom more
than one packet that could be collapsed, and hence the modified part could
not be triggered in most of the collapse scenarios.

Compared with the original kernel, the modifications approximately
halved the distance to the average RTDs in the corresponding thick stream
scenario, a significant improvement. Thus, we have tested the TCP vari-
ations, discovered serious weaknesses in their thin stream performance,
proposed, implemented and tested several enhancements, it is time to wrap
it up. This is done in the next and final chapter.

80

Chapter 6

Conclusion, future work

6.1 Conclusion

The objective of this thesis was to test and evaluate the TCP variations
present in the Linux 2.6.15 kernel for thick and thin streams, in different
RTT and loss scenarios, and improve TCP’s performance for thin streams,
as several of it’s incorporated mechanisms were not optimized for this sort
of stream.

The initial tests showed that most of the TCP variations performed
satisfactory in the thick stream scenarios, with respect to the RTD. They
differed considerably in the throughput rate, but this did only have a small
impact on the RTD. The SACK and FACK options provided considerable
improvements in the RTDs and are thus strongly recommended whenever
available. If they are both available, FACK is the recommended option.
Even though the performance was quite different among the protocols in
an arbitrary thick stream scenario, it was always possible to find some vari-
ation that performed satisfactory.

For the thin stream settings, it was hard to find any differences between
the variations. Some differences existed, but these were not consistent at
all, and seemed to be arbitrary for the settings. The tests revealed an over-
all poor performance by the TCP variations. This was mainly due to the
almost total absence of Fast Retransmit, which failed to get invoked due
to the lack of dupACKs, thus leaving the RTO as the only means to detect
packet loss. It’s exponential backoff part lead to a number of extremely
high RTDs, most unfortunate to experience in game scenarios.

To improve performance in the thin stream settings, several enhance-
ments were presented. The removal of the exponential backoff mechanism
was implemented to avoid the high maximum RTDs, while the number of
dupACKs required before invoking the Fast Retransmit mechanism was
reduced from 3 to 1, to utilize the few dupACKs that occasionally occur
in thin streams. Piggybacking outstanding data in a retransmitted packet

81

was implemented to reduce the possibility of needing to retransmit several
successive segments.

The testing of these enhancements showed considerable improvement
in the performance, but the enhancements varied in their contribution. The
removal of the exponential backoff mechanism proved to be the most influ-
ential enhancement for 2 of the 3 test types, and had a considerable effect
in the last test type as well, providing an extreme decline in the maximum
RTDs. The Fast Retransmit modification was suffering from the limited
number of dupACKs present in the first 2 test types, but provided with a
steady generation of dupACKs in the last test type, it showed it’s potential
and provided a huge improvement in the RTDs.

The influence of the Piggybacking mechanism was limited in these tests,
but this was largely due to the nature of the streams tested. The implement-
ation of the Piggybacking mechanism extended an existing feature in the
TCP protocol, which was able to collapse 2 packets to 1 during a retrans-
mission, thus adding an additional packet to the retransmitted packet. The
mechanism was extended to continue collapsing, as long as there was room
in the packet and additional data to fill it with. Due to the thin stream
nature of these tests, it was limited how often and how much additional
data were outstanding. The collapse mechanism could only be invoked in
the Anarchy Online tests. Quite frequently, the retransmitted packet was
the only one in flight, and thus there was nothing to add to the retrans-
mission. When additional data was outstanding, it mostly consisted of 1
packet, thus the extented part of the collapse mechanism was not used.
This part was only occasionally used in the connections. Even when the
collapse mechanism was used, there was a considerable chance that the
original transmission of the added segment(s) had successfully arrived, in
which case the addition of the segment(s) did not have any effect.

Both of the loss detection mechanisms have been modified to provide a
reduced RTD. If we have several packets in flight, there is a chance that we
receive a dupACK, and in that case the modified Fast Retransmit mechan-
ism should ensure a fast retransmission. If we have to wait for the RTO to
expire, we have removed the exponential backoff mechanism to minimize
the unfortunate effect of this mechanism, thus resulting in faster retrans-
missions if we need more than one attempt. Additionally, we can append
additional outstanding data to the retransmission, reducing the possibil-
ity of needing to retransmit several successive segments. Combined, these
mechanisms should provide a considerably improved and possibly quite
satisfactory performance for thin streams as well.

82

6.2 Future work

To really be able to test the Piggybacking modification properly, a test scen-
ario with a steady rate of 3 or 4 collapsable packets in flight should be used.
In addition to the extended testing of the Piggybacking mechanism for re-
transmitted packets, the implementation of piggybacking for every trans-
mitted packet is strongly recommended. Incorporating a full piggybacking
mechanism should avoid a considerable part of the retransmissions alto-
gether, which should have a significant impact. Additionally, reducing the
initial 3 s RTO value should be considered.

If the piggybacking of every transmitted packet cannot be implemen-
ted, an alternative could be to repeat the transmission of a packet. That
is, sending several copies of the same packet when it is requested to be
transmitted. This will improve the chances of a successful reception of the
first transmission. Additionally, if a previous packet was lost, this increases
the chances of receiving dupACKs, and thus the triggering of the modified
Fast Retransmit mechanism, the preferred loss detection mechanism. This
should provide a similar effect, and should reduce the number of retrans-
missions considerably. When retransmissions do occur, the thin streams are
now considerably better equipped to handle these, through the enhance-
ments presented in this thesis.

83

Bibliography

[1] BIC TCP Home Page. http://www.csc.ncsu.edu/faculty/
rhee/export/bitcp/index.htm.

[2] Forward acknowledgment: Refining tcp congestion control. http:
//web.it.kth.se/~haritak/project/details/FACK.html.

[3] H-TCP: TCP Congestion Control for High Bandwidth-Delay Product
Paths. Internet Draft, obtained from: http://www.hamilton.ie/
net/draft-leith-tcp-htcp-00.txt.

[4] How the Linux TCP output engine works. http://vger.kernel.
org/~davem/tcp_output.html.

[5] LARTC Howto. http://lartc.org/howto/.

[6] Netem. http://linux-net.osdl.org/index.php/Netem.

[7] Netperf Homepage. http://www.netperf.org/netperf/
NetperfPage.html.

[8] RFC1072: Tcp extensions for long-delay paths. http://rfc.net/
rfc1072.html.

[9] RFC1122: Requirements for Internet Hosts – Communication Layers.
http://rfc.net/rfc1122.html.

[10] RFC2018: Selective acknowledgment options. http://rfc.net/
rfc2018.html.

[11] RFC2581: TCP Congestion Control. http://rfc.net/rfc2581.
html.

[12] RFC2883: An extension to the selective acknowledgement (sack) op-
tion for tcp. http://rfc.net/rfc2883.html.

[13] RFC2988: Computing TCP’s Retransmission Timer. http://rfc.
net/rfc2988.html.

84

[14] RFC3168: The addition of explicit congestion notification (ecn) to ip.
http://rfc.net/rfc3168.html.

[15] RFC3522: The Eifel Detection Algorithm for TCP. http://rfc.net/
rfc3522.html.

[16] RFC3782: The NewReno Modification to TCP’s Fast Recovery Al-
gorithm. http://rfc.net/rfc3782.html.

[17] Sally Floyd’s Homepage: HighSpeed TCP (HSTCP). http://www.
icir.org/floyd/hstcp.html.

[18] Tcp westwood home page. http://www.cs.ucla.edu/NRL/hpi/
tcpw/.

[19] Tcpdump/libpcap. http://www.tcpdump.org/.

[20] Tcptrace Official Homepage. http://jarok.cs.ohiou.edu/
software/tcptrace/.

[21] The TC manual in Linux.

[22] Tibet introduction. http://www.elet.polimi.it/upload/
martigno/tcp/node1.html.

[23] Yee’s Homepage: HighSpeed TCP. http://www.hep.ucl.ac.uk/
~ytl/tcpip/highspeedtcp/hstcp/index.html.

[24] Yee’s Homepage: TCP Variants. http://www.hep.ucl.ac.uk/
~ytl/tcpip/background/tahoe-reno.html.

[25] E. Blanton, R. Dimond, and M. Allman. Practices for TCP Senders in
the Face of Segment Reordering. http://folk.uio.no/espensp/
draft-blanton-tcp-reordering-00.txt.

[26] L. S. Brakkmo and L. L. Peterson. Tcp vegas: End to end congestion
avoidance on a global internet. IEEE Journal on selected areas in commu-
nications, 13(8):16, 1995.

[27] C. Caini and R. Firrincieli. Packet spreading techniques to avoid
bursty traffic in long RTT TCP connections. Technical report, 2004.
http://folk.uio.no/espensp/01391456.pdf.

[28] C. Caini and R. Firrincieli. TCP Hybla: a TCP enhancement for hetero-
geneous networks. International Journal of Satellite Communications and
Networking, 22(5):547–566, 2004. http://www3.interscience.
wiley.com/cgi-bin/fulltext/109604907/ABSTRACT also
available from: http://folk.uio.no/espensp/E018669126.
pdf.

85

[29] N. Cardwell and B. Bak. A tcp vegas implementation for linux. http:
//flophouse.com/~neal/uw/linux-vegas/.

[30] S. Floyd. RFC3649: HighSpeed TCP for Large Congestion Windows.
http://rfc.net/rfc3649.html.

[31] S. Floyd and K. Fall. Promoting the Use of End-to-End Congestion
Control in the Internet. IEEE/ACM Transactions on Networking, (May
3), 1999. http://www.icir.org/floyd/papers/collapse.
may99.pdf also available from: http://folk.uio.no/espensp/
collapse.may99.pdf.

[32] M. Gerla, M. Y. Sanadini, R. Wang, A. Zanella, C. Casetti, and S. Mas-
celo. Tcp westwood: Congestion window control using bandwidth es-
timation. Technical report. http://www.cs.ucla.edu/NRL/hpi/
tcpw/tcpw_papers/2001-mobicom-0.pdf.

[33] C. Griwodz. Lecture INF5070: Protocols without QoS Support,
2005. Available from: http://www.uio.no/studier/emner/
matnat/ifi/INF5070/h05/undervisningsmat%eriale/
04-nonqos-protocols.pdf or http://folk.uio.no/
espensp/04-nonqos-protocols.pdf.

[34] C. Griwodz and P. Halvorsen. The Fun of using TCP for an MMORPG.
Technical report. http://folk.uio.no/espensp/funtrace.
pdf.

[35] T. Kelly. Scalable TCP: Improving Performance in Highspeed
Wide Area Networks. Technical report, December 2002. Re-
trieved from: http://datatag.web.cern.ch/datatag/
pfldnet2003/papers/kelly.pdf also available from:
http://folk.uio.no/espensp/kelly.pdf.

[36] K. Kurata, G. Hasegawa, and M. Murata. Fairness Comparisons
Between TCP Reno and TCP Vegas for Future Deployment of TCP
Vegas. http://www.isoc.org/inet2000/cdproceedings/2d/
2d_2.htm.

[37] D. Leith, R. Shorten, and Y.Lee. H-TCP: A framework for congestion
control in high-speed and long-distance networks. Technical report,
August 2005. http://www.hamilton.ie/net/htcp2005.pdf.

[38] R. Ludwig and A. Gurtov. The Eifel Response Al-
gorithm for TCP. http://folk.uio.no/espensp/
draft-ietf-tsvwg-tcp-eifel-response-03.txt.

86

[39] M. Mathis and J. Mahdavi. Forward acknowledgement: Refining tcp
congestion control. Association for Computer Machinery (ACM), 26(4):11,
1996.

[40] L. Peterson. Advanced protocol design. http://www.cs.arizona.
edu/protocols/.

[41] R.N.Shorten and D.J.Leith. H-TCP: TCP for high-speed and long-
distance networks. Proc. 2nd Workshop on Protocols for Fast Long Dis-
tance Networks, Argonne, Canada, 2004. http://www.hamilton.ie/
net/htcp3.pdf.

[42] R. Wang, K. Yamada, M. Y. Sanadidi, and M. Gerla. TCP With Sender-
Side Intelligence to Handle Dynamic, Large, Leaky Pipes. IEEE Journal
on selected areas in communications, 23(2):14, 2005. http://www.cs.
ucla.edu/NRL/hpi/tcpw/tcpw_papers/WYSG05.pdf.

[43] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion Control
for Fast, Long Distance Networks. Technical report. http://www.
csc.ncsu.edu/faculty/rhee/export/bitcp.pdf also avail-
able from: http://folk.uio.no/espensp/bitcp.pdf.

87

