Kappa #1

I am interested in control theory as an overall perspective.

Control gain

Control matrix = means / set
influence change = means / set

Lazily take system to infinite distance
slenderness spin off: $f(t) = 0$ means $\mu(t) = 0$.

The control system is useless because even small increase of γ gives no feedback.
Algorithm 1: Input: \(y(1) \) and a sequence of sample points \(u(n) \) for all \(n \). Output: \(y(n) \) for all \(n \).

1. Set \(y(1) \) as the initial value.
2. For each \(n \), compute:
 \[
 y(n) = y(n-1) + 2 \cdot u(n) - y(n-2) + u(n-1)
 \]
 by replacing \(y(n-1), y(n-2), u(n), u(n-1) \) with the corresponding values.

3. Repeat step 2 for all \(n \) in sequence.

4. Return \(y(n) \) for all \(n \).

Note: The algorithm assumes a linear relationship between the input sequence and the output sequence, with the coefficients in the equation adjusted to fit the specific problem at hand.